Density modification of cryo-EM maps

被引:27
|
作者
Terwilliger, Thomas C. [1 ,2 ]
Sobolev, Oleg V. [3 ]
Afonine, Pavel V. [3 ]
Adams, Paul D. [3 ,4 ]
Read, Randy J. [5 ]
机构
[1] New Mexico Consortium, Los Alamos, NM 87544 USA
[2] Los Alamos Natl Lab, Biosci Div, Mail Stop M888, Los Alamos, NM 87545 USA
[3] Lawrence Berkeley Natl Lab, Mol Biophys & Integrated Bioimaging Div, Berkeley, CA 94720 USA
[4] Univ Calif Berkeley, Dept Bioengn, Berkeley, CA 94720 USA
[5] Univ Cambridge, Cambridge Inst Med Res, Dept Haematol, Keith Peters Bldg,Hills Rd, Cambridge CB2 0XY, England
基金
美国国家卫生研究院; 英国惠康基金;
关键词
electron cryomicroscopy; structural biology; map improvement; density modification; RESOLUTION; SPACE; REAL;
D O I
10.1107/S205979832001061X
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Density modification uses expectations about features of a map such as a flat solvent and expected distributions of density in the region of the macromolecule to improve individual Fourier terms representing the map. This process transfers information from one part of a map to another and can improve the accuracy of a map. Here, the assumptions behind density modification for maps from electron cryomicroscopy are examined and a procedure is presented that allows the incorporation of model-based information. Density modification works best in cases where unfiltered, unmasked maps with clear boundaries between the macromolecule and solvent are visible, and where there is substantial noise in the map, both in the region of the macromolecule and the solvent. It also is most effective if the characteristics of the map are relatively constant within regions of the macromolecule and the solvent. Model-based information can be used to improve density modification, but model bias can in principle occur. Here, model bias is reduced by using ensemble models that allow an estimation of model uncertainty. A test of model bias is presented that suggests that even if the expected density in a region of a map is specified incorrectly by using an incorrect model, the incorrect expectations do not strongly affect the final map.
引用
收藏
页码:912 / 925
页数:14
相关论文
共 50 条
  • [21] New measures of anisotropy of cryo-EM maps
    Jose-Luis Vilas
    Hemant D. Tagare
    Nature Methods, 2023, 20 : 1021 - 1024
  • [22] MAINMASTseg: Automated Map Segmentation Method for Cryo-EM Density Maps with Symmetry
    Terashi, Genki
    Kagaya, Yuki
    Kihara, Daisuke
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (05) : 2634 - 2643
  • [23] A fragment based method for modeling of protein segments into cryo-EM density maps
    Ismer, Jochen
    Rose, Alexander S.
    Tiemann, Johanna K. S.
    Hildebrand, Peter W.
    BMC BIOINFORMATICS, 2017, 18
  • [24] CryoRes: Local Resolution Estimation of Cryo-EM Density Maps by Deep Learning
    Dai, Muzhi
    Dong, Zhuoer
    Xu, Kui
    Zhang, Qiangfeng Cliff
    JOURNAL OF MOLECULAR BIOLOGY, 2023, 435 (09)
  • [25] A fragment based method for modeling of protein segments into cryo-EM density maps
    Jochen Ismer
    Alexander S. Rose
    Johanna K. S. Tiemann
    Peter W. Hildebrand
    BMC Bioinformatics, 18
  • [26] Molstack: A platform for interactive presentations of electron density and cryo-EM maps and their interpretations
    Porebski, Przemyslaw J.
    Bokota, Grzegorz
    Venkataramany, Barat S.
    Minor, Wladek
    PROTEIN SCIENCE, 2020, 29 (01) : 120 - 127
  • [27] A Pattern Recognition Tool for Medium-Resolution Cryo-EM Density Maps and Low-Resolution Cryo-ET Density Maps
    Haslam, Devin
    Sazzed, Salim
    Wriggers, Willy
    Kovcas, Julio
    Song, Junha
    Auer, Manfred
    He, Jing
    BIOINFORMATICS RESEARCH AND APPLICATIONS, ISBRA 2018, 2018, 10847 : 233 - 238
  • [28] GemSpot allows modeling of ligands in cryo-EM maps
    Arunima Singh
    Nature Methods, 2020, 17 : 656 - 656
  • [29] Enhancement of Cryo-EM maps by a multiscale tubular filter
    Vargas, Javier
    Gomez-Pedrero, Jose A.
    Antonio Quiroga, J.
    Alonso, Jose
    OPTICS EXPRESS, 2022, 30 (03) : 4515 - 4527
  • [30] Cryo-EM
    Nogales, Eva
    CURRENT BIOLOGY, 2018, 28 (19) : R1127 - R1128