Biofuel cells based on direct enzyme-electrode contacts using PQQ-dependent glucose dehydrogenase/bilirubin oxidase and modified carbon nanotube materials

被引:69
作者
Scherbahn, V. [1 ]
Putze, M. T. [1 ]
Dietzel, B. [2 ]
Heinlein, T. [3 ]
Schneider, J. J. [3 ]
Lisdat, F. [1 ]
机构
[1] Tech Univ Appl Sci, D-15745 Wildau, Germany
[2] Inst Thin Film & Microsensor Technol, D-14513 Teltow, Germany
[3] Tech Univ Darmstadt, Eduard Zintl Inst Inorgan & Phys Chem, D-64287 Darmstadt, Germany
关键词
Enzymatic fuel cell; PQQ-dependent glucose dehydrogenase; Bilirubin oxidase; Buckypaper; Vertically aligned carbon nanotubes; BILIRUBIN-OXIDASE; COPPER CENTERS; FUEL-CELLS; GOLD; ELECTROCHEMISTRY; REDUCTION; MEDIATOR; POLYMER;
D O I
10.1016/j.bios.2014.05.027
中图分类号
Q6 [生物物理学];
学科分类号
071011 ;
摘要
Two types of carbon nanotube electrodes (1) buckypaper (BP) and (2) vertically aligned carbon nanotubes (vaCNT) have been used for elaboration of glucose/O-2 enzymatic fuel cells exploiting direct electron transfer. For the anode pyrroloquinoline quinone dependent glucose dehydrogenase ((PQQ) GDH) has been immobilized on [poly(3-aminobenzoic acid-co-2-methoxyaniline-5-sulfonic acid), PABMSA]-modified electrodes. For the cathode bilirubin oxidase (BOD) has been immobilized on PQQ-modified electrodes. PABMSA and PQQ act as promoter for enzyme bioelectrocatalysis. The voltammetric characterization of each electrode shows current densities in the range of 0.7-1.3 mA/cm(2). The BP-based fuel cell exhibits maximal power density of about 107 mu W/cm(2) (at 490 mV). The vaCNT-based fuel cell achieves a maximal power density of 122 mu W/cm(2) (at 540 mV). Even after three days and several runs of load a power density over 110 mu W/cm(2) is retained with the second system (10 mM glucose). Due to a better power exhibition and an enhanced stability of the vaCNT-based fuel cells they have been studied in human serum samples and a maximal power density of 41 mu W/cm(2) (390 mV) can be achieved. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:631 / 638
页数:8
相关论文
共 49 条
[1]   Mediator-free electrochemical biosensor based on buckypaper with enhanced stability and sensitivity for glucose detection [J].
Ahmadalinezhad, Asieh ;
Wu, Guosheng ;
Chen, Aicheng .
BIOSENSORS & BIOELECTRONICS, 2011, 30 (01) :287-293
[2]   An Overview of Enzymatic Biofuel Cells [J].
Aquino Neto, S. ;
Forti, J. C. ;
De Andrade, A. R. .
ELECTROCATALYSIS, 2010, 1 (01) :87-94
[3]  
Barton S. C., 2010, HDB FUEL CELLS FUNDA, V5, P112
[4]   Mechanistic study of direct electron transfer in bilirubin oxidase [J].
Brocato, Shayna ;
Lau, Carolin ;
Atanassov, Plamen .
ELECTROCHIMICA ACTA, 2012, 61 :44-49
[5]   Redox potentials of the blue copper sites of bilirubin oxidases [J].
Christenson, Andreas ;
Shleev, Sergey ;
Mano, Nicolas ;
Heller, Adam ;
Gorton, Lo .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2006, 1757 (12) :1634-1641
[6]   A Glucose BioFuel Cell Implanted in Rats [J].
Cinquin, Philippe ;
Gondran, Chantal ;
Giroud, Fabien ;
Mazabrard, Simon ;
Pellissier, Aymeric ;
Boucher, Francois ;
Alcaraz, Jean-Pierre ;
Gorgy, Karine ;
Lenouvel, Francois ;
Mathe, Stephane ;
Porcu, Paolo ;
Cosnier, Serge .
PLOS ONE, 2010, 5 (05)
[7]   A Direct Electron Transfer-Based Glucose/Oxygen Biofuel Cell Operating in Human Serum [J].
Coman, V. ;
Ludwig, R. ;
Harreither, W. ;
Haltrich, D. ;
Gorton, L. ;
Ruzgas, T. ;
Shleev, S. .
FUEL CELLS, 2010, 10 (01) :9-16
[8]   Designing a highly active soluble PQQ-glucose dehydrogenase for efficient glucose biosensors and biofuel cells [J].
Durand, Fabien ;
Stines-Chaumeil, Claire ;
Flexer, Victoria ;
Andre, Isabelle ;
Mano, Nicolas .
BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2010, 402 (04) :750-754
[9]   Direct electron transfer based enzymatic fuel cells [J].
Falk, Magnus ;
Blum, Zoltan ;
Shleev, Sergey .
ELECTROCHIMICA ACTA, 2012, 82 :191-202
[10]   Electrochemistry of bilirubin oxidase and its use in preparation of a low cost enzymatic biofuel cell based on a renewable composite binder chitosan [J].
Filip, Jaroslav ;
Sefcovicova, Jana ;
Gemeiner, Peter ;
Tkac, Jan .
ELECTROCHIMICA ACTA, 2013, 87 :366-374