Linear chaos in the unforced quantum harmonic oscillator

被引:29
作者
Gulisashvili, A [1 ]
MacCluer, CR [1 ]
机构
[1] MICHIGAN STATE UNIV, DEPT MATH, E LANSING, MI 48824 USA
来源
JOURNAL OF DYNAMIC SYSTEMS MEASUREMENT AND CONTROL-TRANSACTIONS OF THE ASME | 1996年 / 118卷 / 02期
关键词
D O I
10.1115/1.2802324
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The annihilation operator of the unforced quantum harmonic oscillator is chaotic.
引用
收藏
页码:337 / 338
页数:2
相关论文
共 15 条
[1]  
Abramowitz M., 1970, HDB MATH FUNCTIONS
[2]  
[Anonymous], 1990, QUANTUM MECH ALGEBRA
[3]   ON DEVANEY DEFINITION OF CHAOS [J].
BANKS, J ;
BROOKS, J ;
CAIRNS, G ;
DAVIS, G ;
STACEY, P .
AMERICAN MATHEMATICAL MONTHLY, 1992, 99 (04) :332-334
[4]  
Devaney R, 1987, An introduction to chaotic dynamical systems, DOI 10.2307/3619398
[5]  
DREXLER KE, 1992, MOL MACHINERY MANUFA
[6]   OPERATORS WITH DENSE, INVARIANT, CYCLIC VECTOR MANIFOLDS [J].
GODEFROY, G ;
SHAPIRO, JH .
JOURNAL OF FUNCTIONAL ANALYSIS, 1991, 98 (02) :229-269
[7]  
Guckenheimer J, 1986, NONLINEAR OSCILLATIO
[8]  
GULISASHVILI A, 1991, ALGEBR ANAL, V3, P226
[9]  
Liboff R.L., 1992, INTRO QUANTUM MECH, Vsecond
[10]  
MACCLUER C, 1994, BOUNDARY VALUE PROBL