ON PERMUTATION BINOMIALS OVER FINITE FIELDS

被引:6
作者
Ayad, Mohamed [1 ]
Belghaba, Kacem [2 ]
Kihel, Omar [3 ]
机构
[1] Univ Littoral, Lab Math Pures & Appl, F-62228 Calais, France
[2] Univ Oran, Lab Math & Ses Applicat, Oran, Algeria
[3] Brock Univ, Dept Math, St Catharines, ON L2S 3A1, Canada
关键词
finite fields; permutation polynomials; Hermite-Dickson theorem;
D O I
10.1017/S0004972713000208
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let F-q be the finite field of characteristic p containing q = p(r) elements and f(x) = ax(n) + x(m), a binomial with coefficients in this field. If some conditions on the greatest common divisor of n - m and q - 1 are satisfied then this polynomial does not permute the elements of the field. We prove in particular that if f(x) = ax(n) + x(m) permutes F-p, where n > m > 0 and a is an element of F-p*, then p- 1 <= (d - 1)d, where d = gcd(n - m, p - 1), and that this bound of p, in terms of d only, is sharp. We show as well how to obtain in certain cases a permutation binomial over a subfield of F-q from a permutation binomial over F-q.
引用
收藏
页码:112 / 124
页数:13
相关论文
共 11 条
[1]  
DICKSON LE, 1896, ANN MATH, V11, P161
[2]   SCHUR COVERS AND CARLITZS CONJECTURE [J].
FRIED, MD ;
GURALNICK, R ;
SAXL, J .
ISRAEL JOURNAL OF MATHEMATICS, 1993, 82 (1-3) :157-225
[3]  
Hermite C., 1863, C.R. Acad. Sci. Paris, V57, P750
[4]  
Lidl R., 2008, FINITE FIELDS
[5]   PERMUTATION BINOMIALS OVER FINITE FIELDS [J].
Masuda, Ariane M. ;
Zieve, Michael E. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (08) :4169-4180
[6]   COMPLETE MAPPINGS OF FINITE-FIELDS [J].
NIEDERREITER, H ;
ROBINSON, KH .
JOURNAL OF THE AUSTRALIAN MATHEMATICAL SOCIETY SERIES A-PURE MATHEMATICS AND STATISTICS, 1982, 33 (OCT) :197-212
[7]  
Small C., 1991, Arithmetic of Finite Fields
[8]  
Small C., 1990, Int. J. Math. Sci, V13, P337, DOI [10.1155/S0161171290000497, DOI 10.1155/S0161171290000497]
[9]  
Turnwald G., 1988, Contrib. Gen. Algebra, V6, P281
[10]  
Wan D., 1987, Acta Math. Sin. (N.S.), V3, P1, DOI DOI 10.1007/BF02564938