Minimizing movement for a fractional porous medium equation in a periodic setting

被引:1
作者
Ferreira, L. C. F. [1 ]
Santos, M. C. [1 ]
Valencia-Guevara, J. C. [2 ]
机构
[1] Univ Estadual Campinas, IMECC, Dept Matemat, BR-13083859 Campinas, SP, Brazil
[2] Univ Catolica San Pablo, Dept Matemat & Estadist, Arequipa, Peru
来源
BULLETIN DES SCIENCES MATHEMATIQUES | 2019年 / 153卷
基金
巴西圣保罗研究基金会;
关键词
Fractional Laplacian; Gradient flow; Minimizing movement; Entropy; GRADIENT FLOW; DIFFUSION;
D O I
10.1016/j.bulsci.2019.01.016
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a fractional porous medium equation that extends the classical porous medium and fractional heat equations. The flow is studied in the space of periodic probability measures endowed with a non-local transportation distance constructed in the spirit of the Benamou-Brenier formula. For initial periodic probability measures, we show the existence of absolutely continuous curves that are generalized minimizing movements associated to Renyi entropy. We also develop a subdifferential calculus in our setting. (C) 2019 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:86 / 117
页数:32
相关论文
共 25 条
[1]   Anomalous diffusion in view of Einstein's 1905 theory of Brownian motion [J].
Abe, S ;
Thurner, S .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 356 (2-4) :403-407
[2]  
Agueh M, 2005, ADV DIFFERENTIAL EQU, V10, P309
[3]  
Ambrosio L., 2008, Gradient flows: in metric spaces and in the space of probability measures
[4]  
[Anonymous], 2000, FUNCTIONS BOUNDED VA
[5]   Continuity of the temperature in boundary heat control problems [J].
Athanasopoulos, I. ;
Caffarelli, L. A. .
ADVANCES IN MATHEMATICS, 2010, 224 (01) :293-315
[6]  
Benamou JD, 2000, NUMER MATH, V84, P375, DOI 10.1007/s002119900117
[7]   The Parabolic-Parabolic Keller-Segel System with Critical Diffusion as a Gradient Flow in Rd, d ≥ 3 [J].
Blanchet, Adrien ;
Laurencot, Philippe .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2013, 38 (04) :658-686
[8]  
Buttazzo G., 1989, Pitman Res. Notes Math. Ser., V207
[9]   GLOBAL-IN-TIME WEAK MEASURE SOLUTIONS AND FINITE-TIME AGGREGATION FOR NONLOCAL INTERACTION EQUATIONS [J].
Carrillo, J. A. ;
Difrancesco, M. ;
Figalli, A. ;
Laurent, T. ;
Slepcev, D. .
DUKE MATHEMATICAL JOURNAL, 2011, 156 (02) :229-271
[10]   Example of a displacement convex functional of first order [J].
Carrillo, Jose A. ;
Slepcev, Dejan .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2009, 36 (04) :547-564