Quasi-classical limit in q-deformed systems, non-commutativity and the q-path integral

被引:11
作者
Chaichian, M
Demichev, AP
Kulish, PP
机构
[1] HELSINKI INST PHYS, FIN-00014 HELSINKI, FINLAND
[2] MOSCOW MV LOMONOSOV STATE UNIV, INST NUCL PHYS, MOSCOW 119899, RUSSIA
[3] VA STEKLOV MATH INST, ST PETERSBURG 191011, RUSSIA
关键词
D O I
10.1016/S0375-9601(97)00513-6
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Different analogs of the quasi-classical limit for a q-oscillator which result in different (commutative and noncommutative) algebras of ''classical'' observables are derived. In particular, this gives the q-deformed Poisson brackets in terms of variables on the quantum planes. We consider a Hamiltonian constructed with a special combination of operators (the analog of even operators in Grassmann algebra) and discuss g-path integrals constructed with the help of contracted ''classical'' algebras. (C) 1997 Elsevier Science B.V.
引用
收藏
页码:251 / 260
页数:10
相关论文
共 27 条
[1]  
Arnold V. I., 1978, Mathematical methods of classical mechanics
[3]   PATH INTEGRAL ON THE QUANTUM PLANE [J].
BAULIEU, L ;
FLORATOS, EG .
PHYSICS LETTERS B, 1991, 258 (1-2) :171-178
[4]   DEFORMATION THEORY AND QUANTIZATION .2. PHYSICAL APPLICATIONS [J].
BAYEN, F ;
FLATO, M ;
FRONSDAL, C ;
LICHNEROWICZ, A ;
STERNHEIMER, D .
ANNALS OF PHYSICS, 1978, 111 (01) :111-151
[5]   GENERAL CONCEPT OF QUANTIZATION [J].
BEREZIN, FA .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1975, 40 (02) :153-174
[6]   THE QUANTUM GROUP SUQ(2) AND A Q-ANALOGUE OF THE BOSON OPERATORS [J].
BIEDENHARN, LC .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1989, 22 (18) :L873-L878
[7]   QUANTUM LIE-SUPERALGEBRAS AND Q-OSCILLATORS [J].
CHAICHIAN, M ;
KULISH, P .
PHYSICS LETTERS B, 1990, 234 (1-2) :72-80
[8]   Q-DEFORMED PATH-INTEGRAL [J].
CHAICHIAN, M ;
DEMICHEV, AP .
PHYSICS LETTERS B, 1994, 320 (3-4) :273-280
[9]   PATH-INTEGRALS WITH GENERALIZED GRASSMANN VARIABLES [J].
CHAICHIAN, M ;
DEMICHEV, AP .
PHYSICS LETTERS A, 1995, 207 (1-2) :23-30
[10]  
CHAICHIAN M, 1994, J PHYS A, V26, P4017