Deep learning ensemble for real-time gravitational wave detection of spinning binary black hole mergers

被引:35
作者
Wei, Wei [1 ,2 ,3 ]
Khan, Asad [1 ,2 ,3 ]
Huerta, E. A. [1 ,2 ,3 ,4 ,5 ]
Huang, Xiaobo [1 ,2 ,6 ]
Tian, Minyang [1 ,2 ,3 ]
机构
[1] Univ Illinois, Natl Ctr Supercomp Applicat, Urbana, IL 61801 USA
[2] Univ Illinois, NCSA Ctr Artificial Intelligence Innovat, Urbana, IL 61801 USA
[3] Univ Illinois, Dept Phys, Urbana, IL 61801 USA
[4] Univ Illinois, Illinois Ctr Adv Studies Universe, Urbana, IL 61801 USA
[5] Univ Illinois, Dept Astron, Urbana, IL 61801 USA
[6] Univ Illinois, Dept Math, Urbana, IL 61801 USA
基金
美国国家科学基金会;
关键词
D O I
10.1016/j.physletb.2020.136029
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We introduce the use of deep learning ensembles for real-time, gravitational wave detection of spinning binary black hole mergers. This analysis consists of training independent neural networks that simultaneously process strain data from multiple detectors. The output of these networks is then combined and processed to identify significant noise triggers. We have applied this methodology in O2 and O3 data finding that deep learning ensembles clearly identify binary black hole mergers in open source data available at the Gravitational-Wave Open Science Center. We have also benchmarked the performance of this new methodology by processing 200 hours of open source, advanced LIGO noise from August 2017. Our findings indicate that our approach identifies real gravitational wave sources in advanced LIGO data with a false positive rate of 1 misclassification for every 2.7 days of searched data. A follow up of these misclassifications identified them as glitches. Our deep learning ensemble represents the first class of neural network classifiers that are trained with millions of modeled waveforms that describe quasi-circular, spinning, non-precessing, binary black hole mergers. Once fully trained, our deep learning ensemble processes advanced LIGO strain data faster than real-time using 4 NVIDIA V100 GPUs. (C) 2020 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license.
引用
收藏
页数:8
相关论文
共 38 条
  • [1] Abadi M, 2016, ACM SIGPLAN NOTICES, V51, P1, DOI [10.1145/2951913.2976746, 10.1145/3022670.2976746]
  • [2] GW190521: A Binary Black Hole Merger with a Total Mass of 150 M⊙
    Abbott, B. P.
    Abbott, R.
    Abbott, T. D.
    Abraham, S.
    Acernese, F.
    Ackley, K.
    Adams, C.
    Adhikari, R. X.
    Adya, V. B.
    Affeldt, C.
    Agathos, M.
    Agatsuma, K.
    Aggarwal, N.
    Aguiar, O. D.
    Aiello, L.
    Ain, A.
    Ajith, P.
    Allen, G.
    Allocca, A.
    Aloy, M. A.
    Altin, P. A.
    Amato, A.
    Anand, S.
    Ananyeva, A.
    Anderson, S. B.
    Anderson, W. G.
    Angelova, S. V.
    Antier, S.
    Appert, S.
    Arai, K.
    Araya, M. C.
    Areeda, J. S.
    Arene, M.
    Arnaud, N.
    Aronson, S. M.
    Ascenzi, S.
    Ashton, G.
    Aston, S. M.
    Astone, P.
    Aubin, F.
    Aufmuth, P.
    AultONeal, K.
    Austin, C.
    Avendano, V.
    Avila-Alvarez, A.
    Babak, S.
    Bacon, P.
    Badaracco, F.
    Bader, M. K. M.
    Bae, S.
    [J]. PHYSICAL REVIEW LETTERS, 2020, 125 (10)
  • [3] Abbott R., 2021, PHYS REV X, V11, DOI DOI 10.1103/PHYSREVX.11.021053
  • [4] Advanced Virgo: a second-generation interferometric gravitational wave detector
    Acernese, F.
    Agathos, M.
    Agatsuma, K.
    Aisa, D.
    Allemandou, N.
    Allocca, A.
    Amarni, J.
    Astone, P.
    Balestri, G.
    Ballardin, G.
    Barone, F.
    Baronick, J-P
    Barsuglia, M.
    Basti, A.
    Basti, F.
    Bauer, Th S.
    Bavigadda, V.
    Bejger, M.
    Beker, M. G.
    Belczynski, C.
    Bersanetti, D.
    Bertolini, A.
    Bitossi, M.
    Bizouard, M. A.
    Bloemen, S.
    Blom, M.
    Boer, M.
    Bogaert, G.
    Bondi, D.
    Bondu, F.
    Bonelli, L.
    Bonnand, R.
    Boschi, V.
    Bosi, L.
    Bouedo, T.
    Bradaschia, C.
    Branchesi, M.
    Briant, T.
    Brillet, A.
    Brisson, V.
    Bulik, T.
    Bulten, H. J.
    Buskulic, D.
    Buy, C.
    Cagnoli, G.
    Calloni, E.
    Campeggi, C.
    Canuel, B.
    Carbognani, F.
    Cavalier, F.
    [J]. CLASSICAL AND QUANTUM GRAVITY, 2015, 32 (02)
  • [5] [Anonymous], CLASS QUANT GRAV
  • [6] Asad Khan, 2020, DEEP LEARNING MODEL, DOI [10.26311/8wnt-3343, DOI 10.26311/8WNT-3343]
  • [7] Deep learning for clustering of continuous gravitational wave candidates
    Beheshtipour, B.
    Papa, M. A.
    [J]. PHYSICAL REVIEW D, 2020, 101 (06)
  • [8] Reduced-Order Modeling with Artificial Neurons for Gravitational-Wave Inference
    Chua, Alvin J. K.
    Galley, Chad R.
    Vallisneri, Michele
    [J]. PHYSICAL REVIEW LETTERS, 2019, 122 (21)
  • [9] Deighan D.S., 2020, ARXIV201004340GRQC
  • [10] Deep-learning continuous gravitational waves: Multiple detectors and realistic noise
    Dreissigacker, Christoph
    Prix, Reinhard
    [J]. PHYSICAL REVIEW D, 2020, 102 (02)