Role of lattice strain and texture in hydrogen embrittlement of 18Ni (300) maraging steel

被引:30
作者
Beres, M. [1 ]
Wu, L. [2 ]
Santos, L. P. M. [1 ,3 ]
Masoumi, M. [1 ]
da Rocha Filho, F. A. M. [1 ]
da Silva, C. C. [1 ]
de Abreu, H. F. G. [1 ]
Gomes da Silva, M. J. [1 ]
机构
[1] Univ Fed Ceara, Dept Met & Mat Engn, Campus Pici,Av Humberto Monte, BR-60445554 Fortaleza, CE, Brazil
[2] Brazilian Nanotechnol Natl Lab LNNano, CNPEM, R Giuseppe Maximo Scolfaro 10000, BR-13083970 Campinas, SP, Brazil
[3] Univ Fed Ceara, Dept Analyt Chem & Phys Chem, Campus Pici,Av Humberto Monte, BR-60451970 Fortaleza, CE, Brazil
关键词
Maraging steel; Hydrogen-induced crack; EBSD; Lattice strain; Synchrotron X-ray diffraction; ENVIRONMENTALLY ASSISTED CRACKING; HIGH-STRENGTH STEELS; CRYSTALLOGRAPHIC TEXTURE; MARTENSITIC STEEL; INTERNAL HYDROGEN; STAINLESS-STEEL; PIPELINE STEELS; GRAIN-SIZE; FRACTURE; FAILURE;
D O I
10.1016/j.ijhydene.2017.03.209
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Hydrogen embrittlement causes engineering components to fail unexpectedly. Maraging 300 steel was hydrogen charged and subjected to slow strain rate tensile test until fracture. Electron backscatter diffraction analysis of fractured specimen revealed that cracks initially propagated intergranulary along prior-austenite grain boundaries. When cracks faced martensitic {111}alpha planes parallel to normal direction (ND) they were deflected and continued to propagate transgranulary through {001}alpha//ND planes. Finally, cracks were arrested by {111}alpha//ND planes. Crystallographic planes on which cracks propagate/are arrested, correlate well with planes that exhibit highest/lowest magnitude of lattice strain determined during tensile loading using in situ synchrotron X-ray diffraction. (C) 2017 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:14786 / 14793
页数:8
相关论文
共 51 条
[1]  
[Anonymous], 2009, F162409 ASTM
[2]  
ASTM, 2000, G12900 ASTM
[3]   Texture Analysis with MTEX - Free and Open Source Software Toolbox [J].
Bachmann, F. ;
Hielscher, R. ;
Schaeben, H. .
TEXTURE AND ANISOTROPY OF POLYCRYSTALS III, 2010, 160 :63-+
[4]  
Beacham C. D., 1972, METALL MATER TRANS B, V3, P441, DOI DOI 10.1007/BF02642048
[5]   Grain-boundary engineering markedly reduces susceptibility to intergranular hydrogen embrittlement in metallic materials [J].
Bechtle, S. ;
Kumar, M. ;
Somerday, B. P. ;
Launey, M. E. ;
Ritchie, R. O. .
ACTA MATERIALIA, 2009, 57 (14) :4148-4157
[6]   HYDROGEN-ENHANCED LOCALIZED PLASTICITY - A MECHANISM FOR HYDROGEN-RELATED FRACTURE [J].
BIRNBAUM, HK ;
SOFRONIS, P .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 1994, 176 (1-2) :191-202
[7]   High-energy X-ray diffraction study on the temperature-dependent mechanical stability of retained austenite in low-alloyed TRIP steels [J].
Blonde, R. ;
Jimenez-Melero, E. ;
Zhao, L. ;
Wright, J. P. ;
Bruck, E. ;
van der Zwaag, S. ;
van Dijk, N. H. .
ACTA MATERIALIA, 2012, 60 (02) :565-577
[8]   ARPGE:: a computer program to automatically reconstruct the parent grains from electron backscatter diffraction data [J].
Cayron, Cyril .
JOURNAL OF APPLIED CRYSTALLOGRAPHY, 2007, 40 :1183-1188
[9]   Application of electron backscatter diffraction (EBSD) to fracture studies of ferritic steels [J].
Davies, PA ;
Novovic, M ;
Randle, V ;
Bowen, P .
JOURNAL OF MICROSCOPY-OXFORD, 2002, 205 (03) :278-284
[10]   MICROSCOPIC DETERMINATION OF AUSTENITE IN 18-PERCENT NI MARAGING-STEEL [J].
FAROOQ, M ;
HAQ, A ;
HASHMI, FH ;
KHAN, AQ .
METALLOGRAPHY, 1987, 20 (03) :377-383