A Three in One Strategy to Achieve Zirconium Doping, Boron Doping, and Interfacial Coating for Stable LiNi0.8Co0.1Mn0.1O2 Cathode

被引:79
作者
Feng, Ze [1 ]
Rajagopalan, Ranjusha [1 ]
Zhang, Shan [1 ]
Sun, Dan [1 ]
Tang, Yougen [1 ]
Ren, Yu [2 ]
Wang, Haiyan [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Hunan Prov Key Lab Efficient & Clean Utilizat Man, Changsha 410083, Peoples R China
[2] Tianmu Lake Inst Adv Energy Storage Technol, TEC Mat Dev Team, Changzhou 213300, Jiangsu, Peoples R China
基金
国家重点研发计划;
关键词
LiNi0; 8Co0; 1Mn0; 1O2; oxygen vacancies; structural stability; thermal stability; ZrB2; LAYERED OXIDE CATHODES; NI-RICH; ELECTROCHEMICAL PERFORMANCES; ENERGY DENSITY; ION BATTERIES; STABILITY; VOLTAGE; SURFACE; CAPACITY; MECHANISM;
D O I
10.1002/advs.202001809
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
LiNi0.8Co0.1Mn0.1O2 cathodes suffer from severe bulk structural and interfacial degradation during battery operation. To address these issues, a three in one strategy using ZrB2 as the dopant is proposed for constructing a stable Ni-rich cathode. In this strategy, Zr and B are doped into the bulk of LiNi0.8Co0.1Mn0.1O2, respectively, which is beneficial to stabilize the crystal structure and mitigate the microcracks. Meanwhile, during the high-temperature calcination, some of the remaining Zr at the surface combined with the surface lithium source to form lithium zirconium coatings, which physically protect the surface and suppress the interfacial phase transition upon cycling. Thus, the 0.2 mol% ZrB2-LiNi0.8Co0.1Mn0.1O2 cathode delivers a discharge capacity of 183.1 mAh g(-1) after 100 cycles at 50 degrees C (1C, 3.0-4.3 V), with an outstanding capacity retention of 88.1%. The cycling stability improvement is more obvious when the cut-off voltage increased to 4.4 V. Density functional theory confirms that the superior structural stability and excellent thermal stability are attributed to the higher exchange energy of Li/Ni exchange and the higher formation energy of oxygen vacancies by ZrB2 doping. The present work offers a three in one strategy to simultaneously stabilize the crystal structure and surface for the Ni-rich cathode via a facile preparation process.
引用
收藏
页数:13
相关论文
共 69 条
[11]   Surface Modification for Suppressing Interfacial Parasitic Reactions of a Nickel-Rich Lithium-Ion Cathode [J].
Gao, Han ;
Cai, Jiyu ;
Xu, Gui-Liang ;
Lo, Luxi ;
Ren, Yang ;
Meng, Xiangbo ;
Amine, Khalil ;
Chen, Zonghai .
CHEMISTRY OF MATERIALS, 2019, 31 (08) :2723-2730
[12]   Structural, electrochemical and Li-ion transport properties of Zr-modified LiNi0.8Co0.1Mn0.1O2 positive electrode materials for Li-ion batteries [J].
Gao, Shuang ;
Zhan, Xiaowen ;
Cheng, Yang-Tse .
JOURNAL OF POWER SOURCES, 2019, 410 :45-52
[13]   Anchoring Interfacial Nickel Cations on Single-Crystal LiNi0.8Co0.1Mn0.1O2 Cathode Surface via Controllable Electron Transfer [J].
Han, Yongkang ;
Heng, Shuai ;
Wang, Yan ;
Qu, Qunting ;
Zheng, Honghe .
ACS ENERGY LETTERS, 2020, 5 (07) :2421-2433
[14]   Understanding and improving the initial Coulombic efficiency of high-capacity anode materials for practical sodium ion batteries [J].
He, Hanna ;
Sun, Dan ;
Tang, Yougen ;
Wang, Haiyan ;
Shao, Minhua .
ENERGY STORAGE MATERIALS, 2019, 23 :233-251
[15]   Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release [J].
Hu, Enyuan ;
Yu, Xiqian ;
Lin, Ruoqian ;
Bi, Xuanxuan ;
Lu, Jun ;
Bak, Seongmin ;
Nam, Kyung-Wan ;
Xin, Huolin L. ;
Jaye, Cherno ;
Fischer, Daniel A. ;
Amine, Kahlil ;
Yang, Xiao-Qing .
NATURE ENERGY, 2018, 3 (08) :690-698
[16]   Nitrogen Plasma-Treated Core-Bishell Si@SiOx@TiO2-δ: Nanoparticles with Significantly Improved Lithium Storage Performance [J].
Hu, Jing ;
Fu, Liang ;
Rajagopalan, Ranjusha ;
Zhang, Qi ;
Luan, Jingyi ;
Zhang, Hehe ;
Tang, Yougen ;
Peng, Zhiguang ;
Wang, Haiyan .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (31) :27658-27666
[17]   Lithium/Oxygen Incorporation and Microstructural Evolution during Synthesis of Li-Rich Layered Li[Li0.2Ni0.2Mn0.6]O2 Oxides [J].
Hua, Weibo ;
Chen, Mingzhe ;
Schwarz, Bjoern ;
Knapp, Michael ;
Bruns, Michael ;
Barthel, Juri ;
Yang, Xiushan ;
Sigel, Florian ;
Azmi, Raheleh ;
Senyshyn, Anatoliy ;
Missiul, Alkesandr ;
Simonelli, Laura ;
Etter, Martin ;
Wang, Suning ;
Mu, Xiaoke ;
Fiedler, Andy ;
Binder, Joachim R. ;
Guo, Xiaodong ;
Chou, Shulei ;
Zhong, Benhe ;
Indris, Sylvio ;
Ehrenberg, Helmut .
ADVANCED ENERGY MATERIALS, 2019, 9 (08)
[18]   Tellurium Surface Doping to Enhance the Structural Stability and Electrochemical Performance of Layered Ni-Rich Cathodes [J].
Huang, Yan ;
Liu, Xia ;
Yu, Ruizhi ;
Cao, Shuang ;
Pei, Yong ;
Luo, Zhigao ;
Zhao, Qinglan ;
Chang, Baobao ;
Wang, Ying ;
Wang, Xianyou .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (43) :40022-40033
[19]   Influence of Mg2+ doping on the structure and electrochemical performances of layered LiNi0.6Co0.2-xMn0.2MgxO2 cathode materials [J].
Huang, Zhenjun ;
Wang, Zhixing ;
Guo, Huajun ;
Li, Xinhai .
JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 671 :479-485
[20]   Stable cycling of high-voltage lithium metal batteries in ether electrolytes [J].
Jiao, Shuhong ;
Ren, Xiaodi ;
Cao, Ruiguo ;
Engelhard, Mark H. ;
Liu, Yuzi ;
Hu, Dehong ;
Mei, Donghai ;
Zheng, Jianming ;
Zhao, Wengao ;
Li, Qiuyan ;
Liu, Ning ;
Adams, Brian D. ;
Ma, Cheng ;
Liu, Jun ;
Zhang, Ji-Guang ;
Xu, Wu .
NATURE ENERGY, 2018, 3 (09) :739-746