Terminal Value Problem for Differential Equations with Hilfer-Katugampola Fractional Derivative

被引:26
作者
Benchohra, Mouffak [1 ,2 ]
Bouriah, Soufyane [3 ]
Nieto, Juan J. [4 ]
机构
[1] Djillali Liabes Univ Sidi Bel Abbes, Lab Math, POB 89, Sidi Bel Abbes 22000, Algeria
[2] King Saud Univ, Coll Sci, Dept Math, POB 2455, Riyadh 11451, Saudi Arabia
[3] Hassiba Benbouali Univ, Fac Exact Sci & Informat, Dept Math, POB 151, Chlef 02000, Algeria
[4] Univ Santiago de Compostela, Inst Matemat, Dept Estat Anal Matemat & Optimizac, Santiago De Compostela 15705, Spain
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 05期
关键词
Hilfer-Katugampola fractional derivative; terminal value problem; existence; uniqueness; fixed point;
D O I
10.3390/sym11050672
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We present in this work the existence results and uniqueness of solutions for a class of boundary value problems of terminal type for fractional differential equations with the Hilfer-Katugampola fractional derivative. The reasoning is mainly based upon different types of classical fixed point theory such as the Banach contraction principle and Krasnoselskii's fixed point theorem. We illustrate our main findings, with a particular case example included to show the applicability of our outcomes.
引用
收藏
页数:14
相关论文
共 27 条
[1]  
Abbas S, 2018, DEGRUYTER SER NONLIN, V26, P1, DOI 10.1515/9783110553819
[2]  
Abbas S., 2015, Advanced fractional differential and integral equations
[3]  
Abbas S., 2012, Topics in fractional differential equations, DOI DOI 10.1007/978-1-4614-4036-9
[4]   PERIODIC SOLUTIONS FOR NONLINEAR FRACTIONAL DIFFERENTIAL SYSTEMS [J].
Abbas, Said ;
Benchohra, Mouffak ;
Bouriah, Soufyane ;
Nieto, Juan J. .
DIFFERENTIAL EQUATIONS & APPLICATIONS, 2018, 10 (03) :299-316
[5]  
Ahmad B., 2017, Hadamard-Type Fractional Differential Equations, Inclusions and Inequalities
[6]   Fractional differential inclusions with fractional separated boundary conditions [J].
Ahmad, Bashir ;
Ntouyas, Sotiris K. .
FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (03) :362-382
[7]   Fractional Differential Equations With Dependence on the Caputo-Katugampola Derivative [J].
Almeida, Ricardo ;
Malinowska, Agnieszka B. ;
Odzijewicz, Tatiana .
JOURNAL OF COMPUTATIONAL AND NONLINEAR DYNAMICS, 2016, 11 (06)
[8]  
[Anonymous], 2015, Communications on Applied Nonlinear Analysis
[9]  
Baleanu D., 2010, New Trends in Nanotechnology and Fractional Calculus Applications
[10]  
Baleanu D., 2012, Fractional calculus: Models and numerical methods