A half-discrete Hardy-Hilbert-type inequality related to hyperbolic secant function

被引:1
作者
Yang, Bicheng [1 ]
Chen, Qiang [2 ]
机构
[1] Guangdong Univ Educ, Dept Math, Guangzhou 51003, Guangdong, Peoples R China
[2] Guangdong Univ Educ, Dept Comp Sci, Guangzhou 51003, Guangdong, Peoples R China
基金
中国国家自然科学基金;
关键词
Hardy-Hilbert-type inequality; weight function; equivalent form; reverse; operator; INTEGRAL INEQUALITY;
D O I
10.1186/s13660-015-0929-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
By applying weight functions and technique of real analysis, a half-discrete Hardy-Hilbert-type inequality related to the kernel of hyperbolic secant function and a best possible constant factor are given. The equivalent forms, the operator expressions with the norm, the reverses, and some particular cases are also considered.
引用
收藏
页码:1 / 24
页数:24
相关论文
共 42 条
[1]  
[Anonymous], 1991, Math. Appl. (East Eur. Ser.)
[2]  
Arpad B., 2006, J INEQUALITIES APPL, V2006, P28582
[3]  
Azar L, 2009, J INEQUAL APPL, V2009
[4]  
Hardy G.H., 1952, Inequalities
[5]  
Hong Y., 2005, INEQ PURE APPL MATH, V6, P92
[6]  
Krnic M, 2005, PUBL MATH-DEBRECEN, V67, P315
[7]  
Krnic M, 2008, MATH INEQUAL APPL, V11, P701
[8]   On a multidimensional version of the Hilbert type inequality [J].
Krnic, Mario ;
Vukovic, Predrag .
ANALYSIS MATHEMATICA, 2012, 38 (04) :291-303
[9]  
KUANG J. C., 2007, PACIFIC J APPL MATH, V1, P95
[10]  
Kuang J.C., 2014, REAL ANAL FUNCTIONAL