PARTIAL DIFFERENCE EQUATIONS ON GRAPHS FOR MATHEMATICAL MORPHOLOGY OPERATORS OVER IMAGES AND MANIFOLDS

被引:8
作者
Ta, Vinh-Thong [1 ]
Elmoataz, Abderrahim [1 ]
Lezoray, Olivier [1 ]
机构
[1] Univ Caen Basse Normandie, CNRS, GREYC, UMR 6072,Image Team, F-14050 Caen, France
来源
2008 15TH IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOLS 1-5 | 2008年
关键词
Mathematical Morphology; PDEs; Partial difference; Graphs; Non local;
D O I
10.1109/ICIP.2008.4711876
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The main tools of Mathematical Morphology are a broad class of nonlinear image operators. They can be defined in terms of algebraic set operators or as Partial Differential Equations (PDEs). We propose a framework of partial difference equations on arbitrary graphs for introducing and analyzing morphological operators in local and non local configurations. The proposed framework unifies the classical local PDEs-based morphology for image processing, generalizes them for non local configurations and extends them to the processing of any discrete data living on graphs.
引用
收藏
页码:801 / 804
页数:4
相关论文
共 6 条
[1]   Energy partitions and image segmentation [J].
Arbeláez, PA ;
Cohen, LD .
JOURNAL OF MATHEMATICAL IMAGING AND VISION, 2004, 20 (1-2) :43-57
[2]  
Breuss M, 2007, LECT NOTES COMPUT SC, V4478, P515
[3]  
ELMOATAZ A, 2007, NONLOCAL DISCRETE RE
[4]  
Gilboa G., 2007, NONLOCAL OPERATORS A
[5]  
Maragos P, 2005, HANDBOOK OF IMAGE AND VIDEO PROCESSING, 2ND EDITION, P587, DOI 10.1016/B978-012119792-6/50098-X
[6]  
Soille P., 2004, MORPHOLOGICAL IMAGE