Tailoring electronic structure of bifunctional Cu/Ag layered electrocatalysts for selective CO2 reduction to CO and CH4

被引:55
作者
Dong, Wan Jae [1 ]
Yoo, Chul Jong [2 ]
Lim, Jin Wook [1 ]
Park, Jae Yong [1 ]
Kim, Kisoo [1 ]
Kim, Sungjoo [1 ]
Lee, Donghwa [1 ,2 ]
Lee, Jong-Lam [1 ,2 ]
机构
[1] Pohang Univ Sci & Technol POSTECH, Dept Mat Sci & Engn, Pohang 790784, South Korea
[2] Pohang Univ Sci & Technol POSTECH, Div Adv Mat Sci, Pohang 790784, South Korea
基金
新加坡国家研究基金会;
关键词
Cu-Ag; Bifunctional catalyst; Carbon dioxide reduction; Electronic structure; CARBON-DIOXIDE REDUCTION; ELECTROCHEMICAL REDUCTION; COPPER NANOCRYSTALS; EFFICIENT; ELECTROREDUCTION; CU; CATALYSTS; INSIGHTS; SILVER; AU;
D O I
10.1016/j.nanoen.2020.105168
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanostructured catalysts have been extensively demonstrated for electrochemical CO2 reduction. But, efforts to understand the mechanism of bimetallic catalysts have been limited. Here, we study electronic structures in bimetallic Cu/Ag layered catalysts to eliminate geometrical effects on the electrocatalytic characteristics. We found that the interfacial interaction between Cu and Ag affects the valence electronic states as confirmed by synchrotron radiation photoelectron spectroscopy and density functional theory calculation. The Ag adatom on Cu surface decreases charge density by forming an additional bond with Cu. As a result, the binding energy of CO intermediate increases on the surface. As the thickness of Ag layer increases, the effect of interfacial interaction of Cu/Ag gradually weakened and the center of d-states downshifted from 4.38 to 5.28 eV. The optimized Cu/Ag layered catalyst exhibited bifunctional catalytic selectivity with high CO faradaic efficiency (FE) = 89.1% at -0.8 V-RHE and high methane FE = 65.3% at -1.2 V-RHE.
引用
收藏
页数:12
相关论文
共 65 条
[1]   Bifunctional Interface of Au and Cu for Improved CO2 Electroreduction [J].
Back, Seoin ;
Kim, Jun-Hyuk ;
Kim, Yong-Tae ;
Jung, Yousung .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (35) :23022-23027
[2]   QUANTUM-THEORY OF ATOMS IN MOLECULES - DALTON REVISITED [J].
BADER, RFW ;
NGUYENDANG, TT .
ADVANCES IN QUANTUM CHEMISTRY, 1981, 14 :63-124
[3]   Ligand effects in heterogeneous catalysis and electrochemistry [J].
Bligaard, T. ;
Norskov, J. K. .
ELECTROCHIMICA ACTA, 2007, 52 (18) :5512-5516
[4]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[5]   Mechanistic Insights for Low-Overpotential Electroreduction of CO2 to CO on Copper Nanowires [J].
Cao, Liang ;
Raciti, David ;
Li, Chenyang ;
Livi, Kenneth J. T. ;
Rottmann, Paul F. ;
Hemker, Kevin J. ;
Mueller, Tim ;
Wang, Chao .
ACS CATALYSIS, 2017, 7 (12) :8578-8587
[6]   Catalyst electro-redeposition controls morphology and oxidation state for selective carbon dioxide reduction [J].
De Luna, Phil ;
Quintero-Bermudez, Rafael ;
Cao-Thang Dinh ;
Ross, Michael B. ;
Bushuyev, Oleksandr S. ;
Todorovic, Petar ;
Regier, Tom ;
Kelley, Shana O. ;
Yang, Peidong ;
Sargent, Edward H. .
NATURE CATALYSIS, 2018, 1 (02) :103-110
[7]   Monolithic Nanoporous In-Sn Alloy for Electrochemical Reduction of Carbon Dioxide [J].
Dong, Wan Jae ;
Yoo, Chul Jong ;
Lee, Jong-Lam .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (50) :43575-43582
[8]   Morphology Matters: Tuning the Product Distribution of CO2 Electroreduction on Oxide-Derived Cu Foam Catalysts [J].
Dutta, Abhijit ;
Rahaman, Motiar ;
Luedi, Nicola C. ;
Broekmann, Peter .
ACS CATALYSIS, 2016, 6 (06) :3804-3814
[9]   Ultrastable and Atomically Smooth Ultrathin Silver Films Grown on a Copper Seed Layer [J].
Formica, Nadia ;
Ghosh, Dhriti S. ;
Carrilero, Albert ;
Chen, Tong Lai ;
Simpson, Robert E. ;
Pruneri, Valerio .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (08) :3048-3053
[10]   Plasma-Activated Copper Nanocube Catalysts for Efficient Carbon Dioxide Electroreduction to Hydrocarbons and Alcohols [J].
Gao, Dunfeng ;
Zegkinoglou, Ioannis ;
Divins, Nuria J. ;
Scholten, Fabian ;
Sinev, Ilya ;
Grosse, Philipp ;
Roldan Cuenya, Beatriz .
ACS NANO, 2017, 11 (05) :4825-4831