Integrated optical multi-ion quantum logic

被引:218
作者
Mehta, Karan K. [1 ]
Zhang, Chi [1 ]
Malinowski, Maciej [1 ]
Nguyen, Thanh-Long [1 ]
Stadler, Martin [1 ]
Home, Jonathan P. [1 ]
机构
[1] Swiss Fed Inst Technol, Inst Quantum Elect, Dept Phys, Zurich, Switzerland
关键词
ARCHITECTURE; INFORMATION; DYNAMICS; ROBUST; GATES;
D O I
10.1038/s41586-020-2823-6
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Practical and useful quantum information processing requires substantial improvements with respect to current systems, both in the error rates of basic operations and in scale. The fundamental qualities of individual trapped-ion(1) qubits are promising for long-term systems(2), but the optics involved in their precise control are a barrier to scaling(3). Planar-fabricated optics integrated within ion-trap devices can make such systems simultaneously more robust and parallelizable, as suggested by previous work with single ions(4). Here we use scalable optics co-fabricated with a surface-electrode ion trap to achieve high-fidelity multi-ion quantum logic gates, which are often the limiting elements in building up the precise, large-scale entanglement that is essential to quantum computation. Light is efficiently delivered to a trap chip in a cryogenic environment via direct fibre coupling on multiple channels, eliminating the need for beam alignment into vacuum systems and cryostats and lending robustness to vibrations and beam-pointing drifts. This allows us to perform ground-state laser cooling of ion motion and to implement gates generating two-ion entangled states with fidelities greater than 99.3(2) per cent. This work demonstrates hardware that reduces noise and drifts in sensitive quantum logic, and simultaneously offers a route to practical parallelization for high-fidelity quantum processors(5). Similar devices may also find applications in atom(-) and ion-based quantum sensing and timekeeping(6).
引用
收藏
页码:533 / +
页数:14
相关论文
共 46 条
[1]   Implementation of a symmetric surface-electrode ion trap with field compensation using a modulated Raman effect [J].
Allcock, D. T. C. ;
Sherman, J. A. ;
Stacey, D. N. ;
Burrell, A. H. ;
Curtis, M. J. ;
Imreh, G. ;
Linke, N. M. ;
Szwer, D. J. ;
Webster, S. C. ;
Steane, A. M. ;
Lucas, D. M. .
NEW JOURNAL OF PHYSICS, 2010, 12
[2]   Toward scalable ion traps for quantum information processing [J].
Amini, J. M. ;
Uys, H. ;
Wesenberg, J. H. ;
Seidelin, S. ;
Britton, J. ;
Bollinger, J. J. ;
Leibfried, D. ;
Ospelkaus, C. ;
VanDevender, A. P. ;
Wineland, D. J. .
NEW JOURNAL OF PHYSICS, 2010, 12
[3]   Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits [J].
Ballance, C. J. ;
Harty, T. P. ;
Linke, N. M. ;
Sepiol, M. A. ;
Lucas, D. M. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)
[4]  
Ballance C. J., 2017, THESIS
[5]   Ion-trap measurements of electric-field noise near surfaces [J].
Brownnutt, M. ;
Kumph, M. ;
Rabl, P. ;
Blatt, R. .
REVIEWS OF MODERN PHYSICS, 2015, 87 (04)
[6]  
Chiaverini J, 2005, QUANTUM INFORM COMPU, V5, P419
[7]   Demonstration of a small programmable quantum computer with atomic qubits [J].
Debnath, S. ;
Linke, N. M. ;
Figgatt, C. ;
Landsman, K. A. ;
Wright, K. ;
Monroe, C. .
NATURE, 2016, 536 (7614) :63-+
[8]   Thermo-Optic Characterization of Silicon Nitride Resonators for Cryogenic Photonic Circuits [J].
Elshaari, Ali W. ;
Zadeh, Iman Esmaeil ;
Jons, Klaus D. ;
Zwiller, Val .
IEEE PHOTONICS JOURNAL, 2016, 8 (03)
[9]   Towards Practical Classical Processing for the Surface Code [J].
Fowler, Austin G. ;
Whiteside, Adam C. ;
Hollenberg, Lloyd C. L. .
PHYSICAL REVIEW LETTERS, 2012, 108 (18)
[10]   High-Fidelity Universal Gate Set for 9Be+ Ion Qubits [J].
Gaebler, J. P. ;
Tan, T. R. ;
Lin, Y. ;
Wan, Y. ;
Bowler, R. ;
Keith, A. C. ;
Glancy, S. ;
Coakley, K. ;
Knill, E. ;
Leibfried, D. ;
Wineland, D. J. .
PHYSICAL REVIEW LETTERS, 2016, 117 (06)