Hourly cooling load forecasting using time-indexed ARX models with two-stage weighted least squares regression

被引:72
作者
Guo, Yin [1 ,2 ]
Nazarian, Ehsan [3 ]
Ko, Jeonghan [4 ,5 ]
Rajurkar, Kamlakar [6 ]
机构
[1] Univ Nebraska, Facil Management, Lincoln, NE 68588 USA
[2] Univ Nebraska, Facil Planning, Lincoln, NE 68588 USA
[3] Univ Nebraska, Dept Ind & Management Syst Engn, Lincoln, NE 68588 USA
[4] Ajou Univ, Dept Ind Engn, Suwon 443749, Gyeonggi Do, South Korea
[5] Univ Michigan, Dept Ind & Operat Engn, Ann Arbor, MI 48109 USA
[6] Univ Nebraska, Dept Mech & Mat Engn, Lincoln, NE 68588 USA
关键词
Cooling load; Forecasting; ARX; Weighted least squares; CONVERGENCE ANALYSIS; NEURAL-NETWORK; PREDICTION; SYSTEM; SIMULATION; ALGORITHMS; OPTIMIZATION; BUILDINGS;
D O I
10.1016/j.enconman.2013.12.060
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a robust hourly cooling-load forecasting method based on time-indexed autoregressive with exogenous inputs (ARX) models, in which the coefficients are estimated through a two-stage weighted least squares regression. The prediction method includes a combination of two separate time-indexed ARX models to improve prediction accuracy of the cooling load over different forecasting periods. The two-stage weighted least-squares regression approach in this study is robust to outliers and suitable for fast and adaptive coefficient estimation. The proposed method is tested on a large-scale central cooling system in an academic institution. The numerical case studies show the proposed prediction method performs better than some ANN and ARX forecasting models for the given test data set. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:46 / 53
页数:8
相关论文
共 42 条
[1]   Neural, fuzzy and Grey-Box modelling for entry temperature prediction in a hot strip mill [J].
Angel Barrios, Jose ;
Torres-Alvarado, Miguel ;
Cavazos, Alberto .
EXPERT SYSTEMS WITH APPLICATIONS, 2012, 39 (03) :3374-3384
[2]  
[Anonymous], GLOB TEL C IEEE
[3]  
[Anonymous], 1991, COMPUTING GRAPHICS S, DOI DOI 10.1007/978-1-4613-9154-8_3
[4]  
[Anonymous], P BUILD PERF SIM
[5]   Multiple regression models to predict the annual energy consumption in the Spanish banking sector [J].
Aranda, Alfonso ;
Ferreira, German ;
Mainar-Toledo, M. D. ;
Scarpellini, Sabina ;
Llera Sastresa, Eva .
ENERGY AND BUILDINGS, 2012, 49 :380-387
[6]   Cooling load prediction for buildings using general regression neural networks [J].
Ben-Nakhi, AE ;
Mahmoud, MA .
ENERGY CONVERSION AND MANAGEMENT, 2004, 45 (13-14) :2127-2141
[7]   CONVERGENCE ANALYSIS OF GENERALIZED ITERATIVELY REWEIGHTED LEAST SQUARES ALGORITHMS ON CONVEX FUNCTION SPACES [J].
Bissantz, Nicolai ;
Duembgen, Lutz ;
Munk, Axel ;
Stratmann, Bernd .
SIAM JOURNAL ON OPTIMIZATION, 2009, 19 (04) :1828-1845
[8]   Investigation of some large building energy conservation opportunities using the DOE-2 model [J].
Carriere, M ;
Schoenau, GJ ;
Besant, RW .
ENERGY CONVERSION AND MANAGEMENT, 1999, 40 (08) :861-872
[9]   EnergyPlus: creating a new-generation building energy simulation program [J].
Crawley, DB ;
Lawrie, LK ;
Winkelmann, FC ;
Buhl, WF ;
Huang, YJ ;
Pedersen, CO ;
Strand, RK ;
Liesen, RJ ;
Fisher, DE ;
Witte, MJ ;
Glazer, J .
ENERGY AND BUILDINGS, 2001, 33 (04) :319-331
[10]   Contrasting the capabilities of building energy performance simulation programs [J].
Crawley, Drury B. ;
Hand, Jon W. ;
Kurnmert, Michal ;
Griffith, Brent T. .
BUILDING AND ENVIRONMENT, 2008, 43 (04) :661-673