Non-Noble Metal-based Carbon Composites in Hydrogen Evolution Reaction: Fundamentals to Applications

被引:1486
作者
Wang, Jing [1 ]
Xu, Fan [1 ]
Jin, Haiyan [1 ]
Chen, Yiqing [1 ]
Wang, Yong [1 ]
机构
[1] Zhejiang Univ, Dept Chem, Ctr Chem High Performance & Novel Mat, Adv Mat & Catalysis Grp, Hangzhou 310028, Zhejiang, Peoples R China
基金
中国国家自然科学基金;
关键词
NITROGEN-DOPED GRAPHENE; MOLYBDENUM CARBIDE NANOPARTICLES; ACTIVE EDGE SITES; HIGHLY EFFICIENT ELECTROCATALYST; NICKEL PHOSPHIDE NANOPARTICLES; PT-LIKE ACTIVITY; HIGH-PERFORMANCE; OXYGEN EVOLUTION; BIFUNCTIONAL ELECTROCATALYST; MOS2; NANOSHEETS;
D O I
10.1002/adma.201605838
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Hydrogen has been hailed as a clean and sustainable alternative to finite fossil fuels in many energy systems. Water splitting is an important method for hydrogen production in high purity and large quantities. To accelerate the hydrogen evolution reaction (HER) rate, it is highly necessary to develop high efficiency catalysts and to select a proper electrolyte. Herein, the performances of non-noble metal-based carbon composites under various pH values (acid, alkaline and neutral media) for HER in terms of catalyst synthesis, structure and molecular design are systematically discussed. A detailed analysis of the structure-activity-pH correlations in the HER process gives an insight on the origin of the pH-dependence for HER, and provide guidance for future HER mechanism studies on non-noble metal-based carbon composites. Furthermore, this Review gives a fresh impetus to rational design of high-performance noble-metal-free composites catalysts and guide researchers to employ the established electrocatalysts in proper water electrolysis technologies.
引用
收藏
页数:35
相关论文
共 228 条
[1]   Boron-Capped Tris(glyoximato) Cobalt Clathrochelate as a Precursor for the Electrodeposition of Nanoparticles Catalyzing H2 Evolution in Water [J].
Anxolabehere-Mallart, Elodie ;
Costentin, Cyrille ;
Fournier, Maxime ;
Nowak, Sophie ;
Robert, Marc ;
Saveant, Jean-Michel .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (14) :6104-6107
[2]   Splitting Water with Cobalt [J].
Artero, Vincent ;
Chavarot-Kerlidou, Murielle ;
Fontecave, Marc .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (32) :7238-7266
[3]   Emerging electrochemical energy conversion and storage technologies [J].
Badwal, Sukhvinder P. S. ;
Giddey, Sarbjit S. ;
Munnings, Christopher ;
Bhatt, Anand I. ;
Hollenkamp, Anthony F. .
FRONTIERS IN CHEMISTRY, 2014, 2
[4]   Composite Ni/NiO-Cr2O3 Catalyst for Alkaline Hydrogen Evolution Reaction [J].
Bates, Michael K. ;
Jia, Qingying ;
Ramaswamy, Nagappan ;
Allen, Robert J. ;
Mukerjee, Sanjeev .
JOURNAL OF PHYSICAL CHEMISTRY C, 2015, 119 (10) :5467-5477
[5]   Significant Enhancement of Water Splitting Activity of N-Carbon Electrocatalyst by Trace Level Co Doping [J].
Bayatsarmadi, Bita ;
Zheng, Yao ;
Tang, Youhong ;
Jaroniec, Mietek ;
Qiao, Shi-Zhang .
SMALL, 2016, 12 (27) :3703-3711
[6]   Highly Efficient Hydrogen Evolution Reaction Using Crystalline Layered Three-Dimensional Molybdenum Disulfides Grown on Graphene Film [J].
Behranginia, Amirhossein ;
Asadi, Mohammad ;
Liu, Cong ;
Yasaei, Poya ;
Kumar, Bijandra ;
Phillips, Patrick ;
Foroozan, Tara ;
Waranius, Joseph C. ;
Kim, Kibum ;
Abiade, Jeremiah ;
Klie, Robert F. ;
Curtiss, Larry A. ;
Salehi-Khojin, Amin .
CHEMISTRY OF MATERIALS, 2016, 28 (02) :549-555
[7]  
Bockris J. O., 1981, Comprehensive Treatise of Electrochetnistry Volume 3: Electrochemical Energy Conversion and Storage
[8]   Mixed Close-Packed Cobalt Molybdenum Nitrides as Non-noble Metal Electrocatalysts for the Hydrogen Evolution Reaction [J].
Cao, Bingfei ;
Veith, Gabriel M. ;
Neuefeind, Joerg C. ;
Adzic, Radoslav R. ;
Khalifah, Peter G. .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2013, 135 (51) :19186-19192
[9]   Efficient and Stable Bifunctional Electrocatalysts Ni/NixMy (M = P, S) for Overall Water Splitting [J].
Chen, Gao-Feng ;
Ma, Tian Yi ;
Liu, Zhao-Qing ;
Li, Nan ;
Su, Yu-Zhi ;
Davey, Kenneth ;
Qiao, Shi-Zhang .
ADVANCED FUNCTIONAL MATERIALS, 2016, 26 (19) :3314-3323
[10]   Carbide and nitride overlayers on early transition metal surfaces: Preparation, characterization, and reactivities [J].
Chen, JGG .
CHEMICAL REVIEWS, 1996, 96 (04) :1477-1498