Transient Receptor Potential (TRP) Channels and Taste Sensation

被引:57
作者
Ishimaru, Y. [1 ]
Matsunami, H. [2 ,3 ]
机构
[1] Univ Tokyo, Grad Sch Agr & Life Sci, Dept Appl Biol Chem, Bunkyo Ku, Tokyo 1138657, Japan
[2] Duke Univ, Med Ctr, Dept Mol Genet & Microbiol, Durham, NC 27710 USA
[3] Duke Univ, Med Ctr, Dept Neurobiol, Durham, NC 27710 USA
关键词
taste; receptor; TRP; channel; CATION CHANNEL; SOUR-TASTE; MAMMALIAN TASTE; BITTER TASTE; CHROMOSOMAL LOCALIZATION; UMAMI TASTE; ION-CHANNEL; SWEET TASTE; CELLS; BUDS;
D O I
10.1177/0022034508330212
中图分类号
R78 [口腔科学];
学科分类号
1003 ;
摘要
Humans have 5 basic taste sensations: sweet, bitter, sour, salty, and umami (taste of 1-amino acids). Among 33 genes related to transient receptor potential (TRP) channels, 3-including TRP-melastatin 5 (TRPM5), polycystic kidney disease-1-like 3 (PKD1L3), and polycystic kidney disease-2-like 1 (PKD2L1)-are specifically and abundantly expressed in taste receptor cells. TRP-melastatin 5 is co-expressed with taste receptors T1Rs and T2Rs, and functions as a common downstream component in sweet, bitter, and umami taste signal transduction. In contrast, polycystic kidney disease-1-like 3 and polycystic kidney disease-2-like 1 are co-expressed in distinct subsets of taste receptor cells not expressing TRP-melastatin 5. In the heterologous expression system, cells expressing both polycystic kidney disease-1-like 3 and polycystic kidney disease-2-like 1 responded to sour stimuli, showing a unique "off-response" property. Genetic ablation of polycystic kidney disease-2-like 1-expressing cells resulted in elimination of gustatory nerve response to sour stimuli, indicating that cells expressing polycystic kidney disease-2-like 1 function as sour taste detectors. These results suggest that polycystic kidney disease-1-like 3/polycystic kidney disease-2-like 1 may play a significant role, possibly as taste receptors, in sour taste sensation.
引用
收藏
页码:212 / 218
页数:7
相关论文
共 68 条
[1]   A novel family of mammalian taste receptors [J].
Adler, E ;
Hoon, MA ;
Mueller, KL ;
Chandrashekar, J ;
Ryba, NJP ;
Zuker, CS .
CELL, 2000, 100 (06) :693-702
[2]   IP3 receptor type 3 and PLCβ2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells [J].
Asano-Miyoshi, M ;
Abe, K ;
Emori, Y .
CHEMICAL SENSES, 2001, 26 (03) :259-265
[3]   Nucleoside triphosphate diphosphohydrolase-2 is the ecto-ATPase of type I cells in taste buds [J].
Bartel, Dianna L. ;
Sullivan, Susan L. ;
Lavoie, Elise G. ;
Sevigny, Jean ;
Finger, Thomas E. .
JOURNAL OF COMPARATIVE NEUROLOGY, 2006, 497 (01) :1-12
[4]   Taste-signaling proteins are coexpressed in solitary intestinal epithelial cells [J].
Bezencon, Carole ;
le Coutre, Johannes ;
Damak, Sami .
CHEMICAL SENSES, 2007, 32 (01) :41-49
[5]   The capsaicin receptor: a heat-activated ion channel in the pain pathway [J].
Caterina, MJ ;
Schumacher, MA ;
Tominaga, M ;
Rosen, TA ;
Levine, JD ;
Julius, D .
NATURE, 1997, 389 (6653) :816-824
[6]   T2Rs function as bitter taste receptors [J].
Chandrashekar, J ;
Mueller, KL ;
Hoon, MA ;
Adler, E ;
Feng, LX ;
Guo, W ;
Zuker, CS ;
Ryba, NJP .
CELL, 2000, 100 (06) :703-711
[7]   The receptors and cells for mammalian taste [J].
Chandrashekar, Jayaram ;
Hoon, Mark A. ;
Ryba, Nicholas J. P. ;
Zuker, Charles S. .
NATURE, 2006, 444 (7117) :288-294
[8]   Polycystin-L is a calcium-regulated cation channel permeable to calcium ions [J].
Chen, XZ ;
Vassilev, PM ;
Basora, N ;
Peng, JB ;
Nomura, H ;
Segal, Y ;
Brown, EM ;
Reeders, ST ;
Hediger, MA ;
Zhou, J .
NATURE, 1999, 401 (6751) :383-386
[9]   TRP channels as cellular sensors [J].
Clapham, DE .
NATURE, 2003, 426 (6966) :517-524
[10]   Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction [J].
Clapp, Tod R. ;
Stone, Leslie M. ;
Margolskee, Robert F. ;
Kinnamon, Sue C. .
BMC NEUROSCIENCE, 2001, 2 (1)