Mid-infrared Plasmonic Resonances in 2D VO2 Nanosquare Arrays

被引:51
作者
Matsui, Hiroaki [1 ,2 ]
Ho, Ya-Lun [3 ]
Kanki, Teruo [4 ]
Tanaka, Hidekazu [4 ]
Delaunay, Jean-Jacques [3 ]
Tabata, Hitoshi [1 ,2 ]
机构
[1] Univ Tokyo, Dept Bioengn, Bunkyo Ku, Tokyo 1138656, Japan
[2] Univ Tokyo, Dept Elect Engn & Informat Syst, Bunkyo Ku, Tokyo 1138656, Japan
[3] Univ Tokyo, Dept Mech Engn, Bunkyo Ku, Tokyo 1138656, Japan
[4] Osaka Univ, Inst Sci & Ind Res, Osaka 5670047, Japan
来源
ADVANCED OPTICAL MATERIALS | 2015年 / 3卷 / 12期
关键词
INFRARED-SPECTROSCOPY; TRANSITION; NANOPARTICLES; NANOANTENNAS; GOLD;
D O I
10.1002/adom.201500322
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Plasmon resonances on 2D nanosquare arrays and their temperature-dependent modulations are demonstrated using the insulator-to-metal transition (IMT) of VO2. A comparison between observed experimental trends and electromagnetic simulations reveals that the plasmon coupling is effective in the periodic 2D alignment of metallic VO2 nanosquares and results in a collective plasmon excitation. This plasmon excitation affects the optical responses of VO2 nanosquares in the mid-infrared (IR) range through reduction of plasmon damping in relation to the specifi c band structure of VO2. This preliminary understanding is important for the elucidation of temperature-dependent plasmon resonances. The IMT of VO2 produces temperature-dependent plasmon resonances with respect to spectral features. The electrodynamic simulations reveal that these phenomena are based on plasmon coupling in the nanosquare array when each nanosquare acts as a single metallic domain. The hysteretic plasmon resonances are derived from resonant coupling between metallic VO2 nanosquares via the IMT nature of VO2, which results in temperature-dependent changes in collective plasmon excitations in the nanosquare array.
引用
收藏
页码:1759 / 1767
页数:9
相关论文
共 41 条
  • [1] Surface-Enhanced Infrared Spectroscopy Using Metal Oxide Plasmonic Antenna Arrays
    Abb, Martina
    Wang, Yudong
    Papasimakis, Nikitas
    de Groot, C. H.
    Muskens, Otto L.
    [J]. NANO LETTERS, 2014, 14 (01) : 346 - 352
  • [2] Role of Defects in the Phase Transition of VO2 Nanoparticles Probed by Plasmon Resonance Spectroscopy
    Appavoo, Kannatassen
    Lei, Dang Yuan
    Sonnefraud, Yannick
    Wang, Bin
    Pantelides, Sokrates T.
    Maier, Stefan A.
    Haglund, Richard F., Jr.
    [J]. NANO LETTERS, 2012, 12 (02) : 780 - 786
  • [3] Collective resonances in gold nanoparticle arrays
    Auguie, Baptiste
    Barnes, William L.
    [J]. PHYSICAL REVIEW LETTERS, 2008, 101 (14)
  • [4] Bae S. H., 2013, ADV MATER, V25, P1
  • [5] Electrodynamics of correlated electron materials
    Basov, D. N.
    Averitt, Richard D.
    van der Marel, Dirk
    Dressel, Martin
    Haule, Kristjan
    [J]. REVIEWS OF MODERN PHYSICS, 2011, 83 (02) : 471 - 541
  • [6] Observation of intrinsic size effects in the optical response of individual gold nanoparticles
    Berciaud, S
    Cognet, L
    Tamarat, P
    Lounis, B
    [J]. NANO LETTERS, 2005, 5 (03) : 515 - 518
  • [7] Electromagnetic interactions in plasmonic nanoparticle arrays
    Bouhelier, A
    Bachelot, R
    Im, JS
    Wiederrecht, GP
    Lerondel, G
    Kostcheev, S
    Royer, P
    [J]. JOURNAL OF PHYSICAL CHEMISTRY B, 2005, 109 (08) : 3195 - 3198
  • [8] Mid-infrared properties of a VO2 film near the metal-insulator transition
    Choi, HS
    Ahn, JS
    Jung, JH
    Noh, TW
    Kim, DH
    [J]. PHYSICAL REVIEW B, 1996, 54 (07) : 4621 - 4628
  • [9] Optical properties of subwavelength hole arrays in vanadium dioxide thin films
    Donev, E. U.
    Suh, J. Y.
    Villegas, F.
    Lopez, R.
    Haglund, R. F., Jr.
    Feldman, L. C.
    [J]. PHYSICAL REVIEW B, 2006, 73 (20)
  • [10] Reversible Tunability of the Near-Infrared Valence Band Plasmon Resonance in Cu2-xSe Nanocrystals
    Dorfs, Dirk
    Haertling, Thomas
    Miszta, Karol
    Bigall, Nadja C.
    Kim, Mee Rahn
    Genovese, Alessandro
    Falqui, Andrea
    Povia, Mauro
    Manna, Liberato
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2011, 133 (29) : 11175 - 11180