On the ultimate tensile strength of tantalum

被引:102
作者
Hahn, Eric N. [1 ,2 ]
Germann, Timothy C. [2 ]
Ravelo, Ramon [3 ,4 ,5 ]
Hammerberg, James E. [3 ]
Meyers, Marc A. [1 ]
机构
[1] Univ Calif San Diego, Mat Sci & Engn Program, La Jolla, CA 92093 USA
[2] Los Alamos Natl Lab, Div Theoret, Los Alamos, NM 94550 USA
[3] Los Alamos Natl Lab, X Computat Phys Div, Los Alamos, NM USA
[4] Univ Texas El Paso, Dept Phys, El Paso, TX 79968 USA
[5] Univ Texas El Paso, Mat Res Inst, El Paso, TX 79968 USA
关键词
Tensile strength; Spall; Non-equilibrium molecular dynamics; Tantalum; MOLECULAR-DYNAMICS SIMULATIONS; DRIVEN SPALLATION PROCESS; VOID GROWTH; PLASTIC-DEFORMATION; INTERFEROMETRY TECHNIQUE; LASER-SHOCK; NANOCRYSTALLINE; METALS; PRESSURE; FRACTURE;
D O I
10.1016/j.actamat.2016.12.033
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Strain rate, temperature, and microstructure play a significant role in the mechanical response of materials. Using non-equilibrium molecular dynamics simulations, we characterize the ductile tensile failure of a model body-centered cubic metal, tantalum, over six orders of magnitude in strain rate. Molecular dynamics calculations combined with reported experimental measurements show power-law kinetic relationships that vary as a function of dominant defect mechanism and grain size. The maximum sustained tensile stress, or spall strength, increases with increasing strain rate, before ultimately saturating at ultra-high strain rates, i.e. those approaching or exceeding the Debye frequency. The upper limit of tensile strength can be well estimated by the cohesive energy, or the energy required to separate atoms from one another. At strain rates below the Debye frequency, the spall strength of nanocrystalline Ta is less than single crystalline tantalum. This occurs in part due to the decreased flow stress of the grain boundaries; stress concentrations at grain boundaries that arise due to compatibility requirements; and the growing fraction of grain-boundary atoms as grain size is decreased into the nanocrystalline regime. In the present cases, voids nucleate at defect structures present in the microstructure. The exact makeup and distribution of defects is controlled by the initial microstructure and the plastic deformation during both compression and expansion, where grain boundaries and grain orientation play critical roles. (C) 2016 Published by Elsevier Ltd on behalf of Acta Materialia Inc.
引用
收藏
页码:313 / 328
页数:16
相关论文
共 94 条
[1]   Specific features of the behaviour of targets under negative pressures created by a picosecond laser pulse [J].
Abrosimov, S. A. ;
Bazhulin, A. P. ;
Voronov, V. V. ;
Geras'kin, A. A. ;
Krasyuk, I. K. ;
Pashinin, P. P. ;
Semenov, A. Yu. ;
Stuchebryukhov, I. A. ;
Khishchenko, K. V. ;
Fortov, V. E. .
QUANTUM ELECTRONICS, 2013, 43 (03) :246-251
[2]   SHOCK COMPRESSION AND SPALLATION OF SINGLE CRYSTAL TANTALUM [J].
An, Q. ;
Ravelo, R. ;
Germann, T. C. ;
Han, W. Z. ;
Luo, S. N. ;
Tonks, D. L. ;
Goddard, W. A., III .
SHOCK COMPRESSION OF CONDENSED MATTER - 2011, PTS 1 AND 2, 2012, 1426
[3]  
[Anonymous], 2003, THESIS
[4]  
Antoun T, 2003, HIGH PR SH
[5]   The behavior of tantalum under ultrashort loads induced by femtosecond laser [J].
Ashitkov, S. I. ;
Komarov, P. S. ;
Struleva, E. V. ;
Agranat, M. B. ;
Kanel, G. I. ;
Khishchenko, K. V. .
XXX INTERNATIONAL CONFERENCE ON INTERACTION OF INTENSE ENERGY FLUXES WITH MATTER (ELBRUS 2015), 2015, 653
[6]  
Belak J., 1998, Journal of Computer-Aided Materials Design, V5, P193, DOI 10.1023/A:1008685029849
[7]   EQUATION FOR THE MELTING CURVE OF SOLIDS UNDER HIGH-PRESSURE [J].
BOGUSLAVSKII, YY .
PHYSICA STATUS SOLIDI B-BASIC RESEARCH, 1982, 109 (01) :145-151
[8]   The Morphology of Tensile Failure in Tantalum [J].
Boyce, Brad L. ;
Clark, Blythe G. ;
Lu, Ping ;
Carroll, Jay D. ;
Weinberger, Christopher R. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2013, 44A (10) :4567-4580
[9]   Void initiation in fcc metals: Effect of loading orientation and nanocrystalline effects [J].
Bringa, Eduardo M. ;
Traiviratana, Sirirat ;
Meyers, Marc A. .
ACTA MATERIALIA, 2010, 58 (13) :4458-4477
[10]   Ultrahigh strength in nanocrystalline materials under shock loading [J].
Bringa, EM ;
Caro, A ;
Wang, YM ;
Victoria, M ;
McNaney, JM ;
Remington, BA ;
Smith, RF ;
Torralva, BR ;
Van Swygenhoven, H .
SCIENCE, 2005, 309 (5742) :1838-1841