There Are Infinitely Many Rational Diophantine Sextuples

被引:30
作者
Dujella, Andrej [1 ]
Kazalicki, Matija [1 ]
Mikic, Miljen [2 ]
Szikszai, Marton [3 ]
机构
[1] Univ Zagreb, Dept Math, Bijenicka Cesta 30, Zagreb 10000, Croatia
[2] Kumiciceva 20, Rijeka 51000, Croatia
[3] Univ Debrecen, Inst Math, POB 12, H-4010 Debrecen, Hungary
关键词
ELLIPTIC-CURVES; RANK;
D O I
10.1093/imrn/rnv376
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A rational Diophantine m-tuple is a set of m non zero rationals such that the product of any two of them increased by 1 is a perfect square. The first rational Diophantine quadruple was found by Diophantus, while Euler proved that there are infinitely many rational Diophantine quintuples. In 1999, Gibbs found the first example of a rational Diophantine sextuple. In this paper, we prove that there exist infinitely many rational Diophantine sextuples.
引用
收藏
页码:490 / 508
页数:19
相关论文
共 26 条
[1]   ON THE RANK OF ELLIPTIC CURVES COMING FROM RATIONAL DIOPHANTINE TRIPLES [J].
Aguirre, Julian ;
Dujella, Andrej ;
Carlos Peral, Juan .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 2012, 42 (06) :1759-1776
[2]   EQUATIONS 3X2-2=Y2 AND 8X2-7=Z2 [J].
BAKER, A ;
DAVENPOR.H .
QUARTERLY JOURNAL OF MATHEMATICS, 1969, 20 (78) :129-&
[3]   Uniformity of rational points [J].
Caporaso, L ;
Harris, J ;
Mazur, B .
JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 1997, 10 (01) :1-35
[4]  
Diophantus of Alexandria, 1974, ARITHMETICS BOOK POL, P103
[5]   Concerning the rarity of the reduction polynom and the norm equation. [J].
Dorge, K .
MATHEMATISCHE ANNALEN, 1926, 95 :247-256
[6]  
Dujella A, 1997, ACTA ARITH, V81, P69
[7]   A generalization of a theorem of Baker and Davenport [J].
Dujella, A ;
Petho, A .
QUARTERLY JOURNAL OF MATHEMATICS, 1998, 49 (195) :291-306
[8]  
Dujella A, 2004, J REINE ANGEW MATH, V566, P183
[9]  
Dujella Andrej, 2007, Glasnik Matematicki, Serija III, V42, P3, DOI 10.3336/gm.42.1.01
[10]  
Dujella A., 2001, J THEOR NOMBR BORDX, V13, P111, DOI DOI 10.5802/jtnb.308