Emission of ZnO:Ag nanorods obtained by ultrasonic spray pyrolysis

被引:24
作者
Velazquez Lozada, E. [1 ]
Torchynska, T. V. [2 ]
Casas Espinola, J. L. [2 ]
Perez Milian, B. [3 ]
机构
[1] ESIME Inst Politecn Nacl, Mexico City 07738, DF, Mexico
[2] ESFM Inst Politecn Nacl, Mexico City 07738, DF, Mexico
[3] UPIITA Inst Politecn Nacl, Mexico City 07738, DF, Mexico
关键词
SEM; XRD; Photoluminescence; ZnO:Ag nanorods; Acceptor bound exciton; MOLECULAR-BEAM EPITAXY; GROWTH; PHOTOLUMINESCENCE; FILMS; LUMINESCENCE; EFFICIENCY; DEPENDENCE; DEPOSITION; AMBIENT; ARRAYS;
D O I
10.1016/j.physb.2014.04.083
中图分类号
O469 [凝聚态物理学];
学科分类号
070205 ;
摘要
Scanning electronic microscopy (SEM). X ray diffraction (XRD), photoluminescence (PL) and its temperature dependence have been studied in ZnO:Ag nanorods (NRs) prepared by the ultrasonic spray pyrolysis (USE) method. The time variation at the growth of ZnO:Ag films permits modifying the ZnO phase from the amorphous to crystalline, to change the size of ZnO:Ag NRs and to vary their emission spectra. PL spectra of ZnO:Ag NRs versus temperature has been investigated. This study reveals that the PL band related to the acceptor Ag-zn, (LO phonon replicas of an acceptor bound exciton, ABE (2.877 eV)), and its second-order diffraction peak (144 eV) disappeared in the temperature range of 10-170 K with the formation of free exciton (FX). The PL intensity of defect related PL bands decreases monotonously in the range 10-300 K with the activation energy of 13 meV. The PL band (3.22 eV), related to the LO phonon replica of free exciton (FX-2LO) and its second-order diffraction peak (1.61 eV) increase monotonously in the range 10-300 K. FX related peak dominates in PL spectra at room temperature that testifies on the high quality of ZnO:Ag films prepared by the USE technology. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:111 / 115
页数:5
相关论文
共 36 条
[1]   Fabrication and comparative optical characterization of n-ZnO nanostructures (nanowalls, nanorods, nanoflowers and nanotubes)/p-GaN white-light-emitting diodes [J].
Alvi, N. H. ;
Ali, S. M. Usman ;
Hussain, S. ;
Nur, O. ;
Willander, M. .
SCRIPTA MATERIALIA, 2011, 64 (08) :697-700
[2]   Large hexagonal arrays of aligned ZnO nanorods [J].
Banerjee, D ;
Rybczynski, J ;
Huang, JY ;
Wang, DZ ;
Kempa, K ;
Ren, ZF .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2005, 80 (04) :749-752
[3]   Plasma assisted molecular beam epitaxy of ZnO on c-plane sapphire: Growth and characterization [J].
Chen, YF ;
Bagnall, DM ;
Koh, HJ ;
Park, KT ;
Hiraga, K ;
Zhu, ZQ ;
Yao, T .
JOURNAL OF APPLIED PHYSICS, 1998, 84 (07) :3912-3918
[4]   A low temperature combination method for the production of ZnO nanowires [J].
Cross, RBM ;
De Souza, MM ;
Narayanan, EMS .
NANOTECHNOLOGY, 2005, 16 (10) :2188-2192
[5]   Surface state trapping models for SnO2-based microhotplate sensors [J].
Ding, JH ;
McAvoy, TJ ;
Cavicchi, RE ;
Semancik, S .
SENSORS AND ACTUATORS B-CHEMICAL, 2001, 77 (03) :597-613
[6]   ZnO nanostructures for optoelectronics: Material properties and device applications [J].
Djurisic, A. B. ;
Ng, A. M. C. ;
Chen, X. Y. .
PROGRESS IN QUANTUM ELECTRONICS, 2010, 34 (04) :191-259
[7]   Photoluminescence and electron paramagnetic resonance of ZnO tetrapod structure [J].
Djurisic, AB ;
Choy, WCH ;
Roy, VAL ;
Leung, YH ;
Kwong, CY ;
Cheah, KW ;
Rao, TKG ;
Chan, WK ;
Lui, HT ;
Surya, C .
ADVANCED FUNCTIONAL MATERIALS, 2004, 14 (09) :856-864
[8]   Scanning photoluminescence spectroscopy in InAs/InGaAs quantum-dot structures [J].
Dybiec, M ;
Ostapenko, S ;
Torchynska, TV ;
Losada, EV .
APPLIED PHYSICS LETTERS, 2004, 84 (25) :5165-5167
[9]   SEMICONDUCTOR SUPERFINE STRUCTURES BY COMPUTER-CONTROLLED MOLECULAR-BEAM EPITAXY [J].
ESAKI, L ;
CHANG, LL .
THIN SOLID FILMS, 1976, 36 (02) :285-298
[10]   Role of copper in the green luminescence from ZnO crystals [J].
Garces, NY ;
Wang, L ;
Bai, L ;
Giles, NC ;
Halliburton, LE ;
Cantwell, G .
APPLIED PHYSICS LETTERS, 2002, 81 (04) :622-624