Interfacial functional terminals enhance the heterogeneous nucleation of lysozyme crystals

被引:10
作者
Tong, Xinmeng [1 ]
Kang, Junjie [2 ]
Zhang, Jinli [1 ,2 ]
Jia, Xin [2 ]
Li, Wei [1 ]
机构
[1] Tianjin Univ, Collaborat Innovat Ctr Chem Sci & Chem Engn Tianj, Sch Chem Engn & Technol, Tianjin 300350, Peoples R China
[2] Shihezi Univ, Sch Chem & Chem Engn, Shihezi 832003, Xinjiang, Peoples R China
来源
CRYSTENGCOMM | 2018年 / 20卷 / 18期
关键词
CARBON NANOMATERIAL DIVERSITY; SELF-ASSEMBLED MONOLAYERS; PROTEIN CRYSTALLIZATION; GOLD NANOPARTICLES; GROWTH; KINETICS; MORPHOLOGY; LIQUID; PURIFICATION; TOPOGRAPHY;
D O I
10.1039/c8ce00039e
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
A series of functional terminals were designed to interact with the flexible loop residues of lysozymes, aiming to produce quality protein crystals via intensified heterogeneous nucleation. On the acetamidophenyl (S-PhAc) terminals, the obtained lysozyme crystals have the largest modal size of about 270 mu m. The in situ liquid-cell AFM images reflect the fact that the particle aggregation rate is greatly associated with the functional terminals at the beginning of crystallization, i.e., the fast rate is achieved as 0.088 +/- 0.004 nm s(-1) on S-PhAc, much higher than that on commercial siliconized square cover slides (0.025 +/- 0.005 nm s(-1)). Combining the crystallization results with molecular modeling, it is indicated that the stronger the interactions between lysozyme loop residues and the functional terminals, the more easily the heterogeneous nucleation occurs. It is suggested that designing functional terminals targeting the feature loop residues of proteins would be a promising route to modulate protein crystallization at the early stage.
引用
收藏
页码:2499 / 2510
页数:12
相关论文
共 68 条
  • [1] Carbon-Nanotube-Based Materials for Protein Crystallization
    Asanithi, Piyapong
    Saridakis, Emmanuel
    Govada, Lata
    Jurewicz, Izabela
    Brunner, Eric W.
    Ponnusamy, Rajesh
    Cleaver, Jamie A. S.
    Dalton, Alan B.
    Chayen, Naomi E.
    Sear, Richard P.
    [J]. ACS APPLIED MATERIALS & INTERFACES, 2009, 1 (06) : 1203 - 1210
  • [2] ANALYSIS OF THE NUCLEATION AND CRYSTAL-GROWTH KINETICS OF LYSOZYME BY A THEORY OF SELF-ASSEMBLY
    ATAKA, M
    ASAI, M
    [J]. BIOPHYSICAL JOURNAL, 1990, 58 (03) : 807 - 811
  • [3] Nature of Impurities during Protein Crystallization
    Baskakova, S. S.
    Volkov, V. V.
    Laptinskaya, T. V.
    Lyasnikova, M. S.
    Voloshin, A. E.
    Koval'chuk, M. V.
    [J]. CRYSTALLOGRAPHY REPORTS, 2017, 62 (01) : 148 - 156
  • [4] ANALYSIS OF THE CRYSTALLIZATION KINETICS OF LYSOZYME USING A MODEL WITH POLYNUCLEAR GROWTH-MECHANISM
    BESSHO, Y
    ATAKA, M
    ASAI, M
    KATSURA, T
    [J]. BIOPHYSICAL JOURNAL, 1994, 66 (02) : 310 - 313
  • [5] Dependence of nucleation kinetics and crystal morphology of a model protein system on ionic strength
    Bhamidi, V
    Skrzypczak-Jankun, E
    Schall, CA
    [J]. JOURNAL OF CRYSTAL GROWTH, 2001, 232 (1-4) : 77 - 85
  • [6] CONTROL OF NUCLEATION OF PROTEIN CRYSTALS
    BLOW, DM
    CHAYEN, NE
    LLOYD, LF
    SARIDAKIS, E
    [J]. PROTEIN SCIENCE, 1994, 3 (10) : 1638 - 1643
  • [7] Protein crystallization: from purified protein to diffraction-quality crystal
    Chayen, Naomi E.
    Saridakis, Emmanuel
    [J]. NATURE METHODS, 2008, 5 (02) : 147 - 153
  • [8] Porous silicon: an effective nucleation-inducing material for protein crystallization
    Chayen, NE
    Saridakis, E
    El-Bahar, R
    Nemirovsky, Y
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2001, 312 (04) : 591 - 595
  • [9] An investigation of the effects of varying pH on protein crystallization screening
    Chen, Rui-Qing
    Cheng, Qing-Di
    Chen, Jing-Jie
    Sun, Da-Shan
    Ao, Liang-Bo
    Li, Da-Wei
    Lu, Qin-Qin
    Yin, Da-Chuan
    [J]. CRYSTENGCOMM, 2017, 19 (05): : 860 - 867
  • [10] Nanodiamonds as Nucleating Agents for Protein Crystallization
    Chen, Yen-Wei
    Lee, Chien-Hsun
    Wang, Yung-Lin
    Li, Tsung-Lin
    Chang, Huan-Cheng
    [J]. LANGMUIR, 2017, 33 (26) : 6521 - 6527