On Weighted Dirac Operators and Their Fundamental Solutions for Anisotropic Media

被引:9
作者
Vanegas, Judith [1 ]
Vargas, Franklin [2 ]
机构
[1] Univ Simon Bolivar, Dept Matemat Puras & Aplicadas, Apartado Postal 89000, Caracas, Venezuela
[2] Univ Simon Bolivar, Dept Comp Cient & Estadist, Apartado Postal 89000, Caracas, Venezuela
关键词
Second-order elliptic equations; Fundamental solutions; Clifford algebras depending on parameters;
D O I
10.1007/s00006-018-0860-0
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The heat transfer problem in isotropic media has been studied extensively in Clifford analysis, but very little in the anisotropic case for this setting. As a first step in this way, we introduce in this work Dirac operators with weights belonging to the Clifford algebra A(n), which factor the second order elliptic differential operator (Delta) over tilde (n) = div(B del), where B is an element of R-nxn is a symmetric and positive definite matrix. For these weighted Dirac operators we construct fundamental solutions and get a Borel-Pompeiu and Cauchy integral formula.
引用
收藏
页数:13
相关论文
共 16 条
  • [1] Fundamental Solutions for Second Order Elliptic Operators in Clifford-Type Algebras
    Ariza, Eusebio
    Di Teodoro, Antonio
    Infante, Adrian
    Vanegas, Judith
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (03) : 527 - 538
  • [2] Bernstein S., 2006, Complex Var. Elliptic Equ, V51, P429, DOI DOI 10.1080/17476930500481400
  • [3] Generalized Cauchy-Riemann-type Operators and some Integral Representation Formulas
    Bolivar, Yanett
    Di Teodoro, Antonio
    Vanegas, Judith
    [J]. PROCEEDINGS OF THE INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2014 (ICNAAM-2014), 2015, 1648
  • [4] Initial value problems in Clifford-type analysis
    Bolivar, Yanett M.
    Vanegas, Carmen J.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2013, 58 (04) : 557 - 569
  • [5] Brackx F., 1982, PITMAN RES NOTES MAT, V76
  • [6] Parabolic Dirac operators and the Navier-Stokes equations over time-varying domains
    Cerejeiras, P
    Kähler, U
    Sommen, F
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2005, 28 (14) : 1715 - 1724
  • [7] A Modified Dirac Operator in Parameter-Dependent Clifford Algebra: A Physical Realization
    Di Teodoro, Antonio
    Franquiz, Ricardo
    Lopez, Alexander
    [J]. ADVANCES IN APPLIED CLIFFORD ALGEBRAS, 2015, 25 (02) : 303 - 320
  • [8] Gurlebeck K., 1990, QUATERNIONIC ANAL EL
  • [9] Gurlebeck K., 1997, Quaternionic and Clifford Calculus for Physicists and Engineers
  • [10] Gurlebeck K., 1999, ADV APPL CLIFFORD AL, V9, P23, DOI DOI 10.1007/BF03041935