Size selective particle filtering on centimeter scale by frequency sweep type dynamic acoustic field

被引:4
作者
Kandemir, M. H. [1 ,2 ]
Mohan, K. [2 ,3 ]
Wagterveld, R. M. [2 ]
Yntema, D. R. [2 ]
Keesman, K. J. [1 ,2 ]
机构
[1] Wageningen Univ & Res, Math & Stat Methods Biometris, Droevendaalsesteeg 1, NL-6708 PB Wageningen, Netherlands
[2] Wetsus, European Ctr Excellence Sustainable Water Technol, Oostergoweg 9, NL-8911 MA Leeuwarden, Netherlands
[3] Delft Univ Technol, Dept Mech Maritime & Mat Engn, NL-2628 CN Delft, Netherlands
关键词
Ultrasound; Acoustophoresis; Frequency sweep; Dynamic acoustic fields; Selective particle filtration; ULTRASONIC SEPARATION; SUSPENDED PARTICLES; MANIPULATION; CELLS; FLOW; MICROFILTRATION; FORCE;
D O I
10.1016/j.seppur.2020.118188
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
The objective of the study was to investigate and demonstrate the application of frequency-sweep dynamic acoustic fields for size-selective particle filtration on centimeter scale in a regulated continuous flow. The 3D-printed prototype of the acoustic separator has two inlets and two outlets, whereas the dynamic acoustic field is generated between a transducer, operating in the MHz range, and a reflector. The measured frequency response of the prototype was input to computer models, and simulations were carried out to explore the effects of the sweep period and the flow parameters on the filtration performance. A design-of-experiments study showed that the filtration performance is largely affected by the sweep period and the outlet flow rate. Lab experiments with model particle mixtures demonstrated the size selective filtration performance of the prototype with a total flow rate of 1 L h(-1). A mixture with unknown properties was also used to demonstrate the selective filtration performance of the prototype.
引用
收藏
页数:9
相关论文
共 43 条
[11]   Dynamic-field devices for the ultrasonic manipulation of microparticles [J].
Drinkwater, Bruce W. .
LAB ON A CHIP, 2016, 16 (13) :2360-2375
[12]   Surface acoustic wave actuated cell sorting (SAWACS) [J].
Franke, T. ;
Braunmueller, S. ;
Schmid, L. ;
Wixforth, A. ;
Weitz, D. A. .
LAB ON A CHIP, 2010, 10 (06) :789-794
[13]   Mode-switching: A new technique for electronically varying the agglomeration position in an acoustic particle manipulator [J].
Glynne-Jones, Peter ;
Boltryk, Rosemary J. ;
Harris, Nicholas R. ;
Cranny, Andy W. J. ;
Hill, Martyn .
ULTRASONICS, 2010, 50 (01) :68-75
[14]   An Ultrasonically Enhanced Inclined Settler for Microalgae Harvesting [J].
Gomez, Esteban Hincapie ;
Marchese, Anthony J. .
BIOTECHNOLOGY PROGRESS, 2015, 31 (02) :414-423
[15]  
Gorkov L. P., 1962, Sov. Phys.-Doklady, V6, P773, DOI DOI 10.1142/97898143669600008
[16]   Efficient counter-propagating wave acoustic micro-particle manipulation [J].
Grinenko, A. ;
Ong, C. K. ;
Courtney, C. R. P. ;
Wilcox, P. D. ;
Drinkwater, B. W. .
APPLIED PHYSICS LETTERS, 2012, 101 (23)
[17]  
Groschl M, 1998, ACUSTICA, V84, P432
[18]   Acoustofluidics 22: Multi-wavelength resonators, applications and considerations [J].
Hawkes, Jeremy J. ;
Radel, Stefan .
LAB ON A CHIP, 2013, 13 (04) :610-627
[19]   Dynamic acoustic fields for size selective particle separation on centimeter scale [J].
Kandemir, M. H. ;
Beelen, M. ;
Wagterveld, R. M. ;
Yntema, D. R. ;
Keesman, K. J. .
JOURNAL OF SOUND AND VIBRATION, 2021, 490 (490)
[20]  
Kandemir M.H., 2019, SCI REP, V9, P667