A quantitative version of the theorem on Khintchine's constant

被引:0
作者
Kamienski, Piotr [1 ]
机构
[1] Jagiellonian Univ, Fac Math & Comp Sci, Inst Comp Sci, Lojasiewicza 6, PL-30348 Krakow, Poland
来源
INDAGATIONES MATHEMATICAE-NEW SERIES | 2019年 / 30卷 / 04期
关键词
Continued fractions; Khintchine's constant; Large deviations;
D O I
10.1016/j.indag.2019.03.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the paper we provide measure estimates for the set of numbers whose sequence of products of continued fraction partial quotients M-n = a(1) . . . a(n) has exponential growth with rate close to the one predicted by Khintchine's theorem, i.e. for which e((kappa-T)n) <= M-n <= e((kappa+T)n) for a fixed T > 0 and all n greater than some fixed integer N, where e(kappa) = 2.685 . . . is the Khintchine constant. Choosing N large enough the measure can be made arbitrarily close to full, for any given T. The bounds are not of asymptotic nature, but explicit in terms of the parameters involved. In the proof we compile several known result of large deviations theory, employing the cumulant method in particular. We also discuss the numerical values of the quantities involved. (C) 2019 Royal Dutch Mathematical Society (KWG). Published by Elsevier B.V. All rights reserved.
引用
收藏
页码:649 / 668
页数:20
相关论文
共 18 条
[1]  
Amol'd V. I., 1965, AM MATH SOC TRANSL, V25, P21
[2]  
Bentkus R., 1980, Litovsk. Mat. Sb, V20, P15
[3]  
Bickford N., 2010, PICF CONTINUED FRACT
[4]   Basic Properties of Strong Mixing Conditions. A Survey and Some Open Questions [J].
Bradley, Richard C. .
PROBABILITY SURVEYS, 2005, 2 :107-144
[5]   KAM theory without action-angle variables [J].
de la Llave, R ;
González, A ;
Jorba, A ;
Villanueva, J .
NONLINEARITY, 2005, 18 (02) :855-895
[6]  
Hörmann S, 2009, ALEA-LAT AM J PROBAB, V6, P377
[7]  
Ibragimov I.A., 1961, VESTNIK LENINGRAD U, V16, P13
[8]  
Kamieriski P., 2019, ARXIV190300311
[9]  
KHINCHIN AY, 1936, COMPOS MATH, V3, P275
[10]  
Lang S., 2012, INTRO DIOPHANTINE AP