Metabolomics: population epidemiology and concordance in Australian children aged 11-12 years and their parents

被引:46
作者
Ellul, Susan [1 ]
Wake, Melissa [1 ,2 ,3 ,4 ]
Clifford, Susan A. [1 ,4 ]
Lange, Katherine [1 ,4 ]
Wurtz, Peter [5 ,6 ]
Juonala, Markus [1 ,7 ,8 ]
Dwyer, Terence [1 ,4 ,9 ,10 ]
Carlin, John B. [1 ,4 ]
Burgner, David P. [1 ,4 ,11 ]
Saffery, Richard [1 ,4 ]
机构
[1] Murdoch Childrens Res Inst, Parkville, Vic, Australia
[2] Univ Auckland, Dept Paediat, Auckland, New Zealand
[3] Univ Auckland, Liggins Inst, Auckland, New Zealand
[4] Univ Melbourne, Dept Paediat, Parkville, Vic, Australia
[5] Univ Helsinki, Diabet & Obes, Res Programs Unit, Helsinki, Finland
[6] Nightingale Hlth Ltd, Helsinki, Finland
[7] Univ Turku, Dept Med, Turku, Finland
[8] Turku Univ Hosp, Div Med, Turku, Finland
[9] Univ Oxford, Nuffield Dept Obstet & Gynaecol, George Inst Global Hlth, Oxford, England
[10] Univ Tasmania, Inst Med Res, Hobart, Tas, Australia
[11] Monash Univ, Dept Paediat, Clayton, Vic, Australia
基金
芬兰科学院; 英国医学研究理事会; 澳大利亚国家健康与医学研究理事会;
关键词
metabolomics; lipids; inflammation; reference values; parents; children; inheritance patterns; correlation studies; epidemiologic studies; cross-sectional studies; GENOME-WIDE ASSOCIATION; GENDER; LIPOPROTEINS; METHODOLOGY; CHOLESTEROL; PROFILES; PATHWAYS; SYSTEMS; YOUNG; RATIO;
D O I
10.1136/bmjopen-2017-020900
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Objectives Nuclear magnetic resonance (NMR) metabolomics is high throughput and cost-effective, with the potential to improve the understanding of disease and risk. We examine the circulating metabolic profile by quantitative NMR metabolomics of a sample of Australian 11-12 year olds children and their parents, describe differences by age and sex, and explore the correlation of metabolites in parent-child dyads. Design The population-based cross-sectional Child Health CheckPoint study nested within the Longitudinal Study of Australian Children. Setting Blood samples collected from CheckPoint participants at assessment centres in seven Australian cities and eight regional towns; February 2015-March 2016. Participants 1180 children and 1325 parents provided a blood sample and had metabolomics data available. This included 1133 parent-child dyads (518 mother-daughter, 469 mother-son, 68 father-daughter and 78 father-son). Outcome measures 228 metabolic measures were obtained for each participant. We focused on 74 biomarkers including amino acid species, lipoprotein subclass measures, lipids, fatty acids, measures related to fatty acid saturation, and composite markers of inflammation and energy homeostasis. Results We identified differences in the concentration of specific metabolites between childhood and adulthood and in metabolic profiles in children and adults by sex. In general, metabolite concentrations were higher in adults than children and sex differences were larger in adults than in children. Positive correlations were observed for the majority of metabolites including isoleucine (CC 0.33, 95% CI 0.27 to 0.38), total cholesterol (CC 0.30, 95% CI 0.24 to 0.35) and omega 6 fatty acids (CC 0.28, 95% CI 0.23 to 0.34) in parent-child comparisons. Conclusions We describe the serum metabolite profiles from mid-childhood and adulthood in a population-based sample, together with a parent-child concordance. Differences in profiles by age and sex were observed. These data will be informative for investigation of the childhood origins of adult non-communicable diseases and for comparative studies in other populations.
引用
收藏
页码:106 / 117
页数:12
相关论文
共 44 条
[1]   A metabolic view on menopause and ageing [J].
Auro, Kirsi ;
Joensuu, Anni ;
Fischer, Krista ;
Kettunen, Johannes ;
Salo, Perttu ;
Mattsson, Hannele ;
Niironen, Marjo ;
Kaprio, Jaakko ;
Eriksson, Johan G. ;
Lehtimaki, Terho ;
Raitakari, Olli ;
Jula, Antti ;
Tiitinen, Aila ;
Jauhiainen, Matti ;
Soininen, Pasi ;
Kangas, Antti J. ;
Kahonen, Mika ;
Havulinna, Aki S. ;
Ala-Korpela, Mika ;
Salomaa, Veikko ;
Metspalu, Andres ;
Perola, Markus .
NATURE COMMUNICATIONS, 2014, 5
[2]  
Australian Bureau of Statistics, 2011, CENS POP HOUS SOC IN
[3]   Combining a nontargeted and targeted metabolomics approach to identify metabolic pathways significantly altered in polycystic ovary syndrome [J].
Chang, Alice Y. ;
Lalia, Antigoni Z. ;
Jenkins, Gregory D. ;
Dutta, Tumpa ;
Carter, Rickey E. ;
Singh, Rauinder J. ;
Nair, K. Sreekumaran .
METABOLISM-CLINICAL AND EXPERIMENTAL, 2017, 71 :52-63
[4]   Child Health CheckPoint: cohort summary and methodology of a physical health and biospecimen module for the Longitudinal Study of Australian Children [J].
Clifford, Susan A. ;
Davies, Sarah ;
Wake, Melissa ;
Azzopardi, Peter S. ;
Baur, Louise A. ;
Burgner, David P. ;
Carlin, John B. ;
Cheung, Michael ;
Dwyer, Terence ;
Edwards, Ben ;
Ellul, Susan ;
Gillespie, Alanna N. ;
Gold, Lisa ;
Grobler, Anneke C. ;
Kerr, Jessica A. ;
Lycett, Kate ;
Lange, Katherine ;
Mensah, Fiona K. ;
Olds, Timothy S. ;
Ranganathan, Sarath ;
Rogers, Helen ;
Saffery, Richard ;
Sawyer, Michael ;
Simm, Peter J. ;
Stevens, Luke ;
Wong, Tien Y. ;
Zubrick, Stephen R. .
BMJ OPEN, 2019, 9 :3-22
[5]  
Davies S, 2018, LONGITUDIAL STUDY AU, DOI [10.25374/MCRI.5821230, DOI 10.25374/MCRI.5821230]
[6]  
Davis CE, 1996, AM J EPIDEMIOL, V143, P1100
[7]   Molecular phenotyping of a UK population: defining the human serum metabolome [J].
Dunn, Warwick B. ;
Lin, Wanchang ;
Broadhurst, David ;
Begley, Paul ;
Brown, Marie ;
Zelena, Eva ;
Vaughan, Andrew A. ;
Halsall, Antony ;
Harding, Nadine ;
Knowles, Joshua D. ;
Francis-McIntyre, Sue ;
Tseng, Andy ;
Ellis, David I. ;
O'Hagan, Steve ;
Aarons, Gill ;
Benjamin, Boben ;
Chew-Graham, Stephen ;
Moseley, Carly ;
Potter, Paula ;
Winder, Catherine L. ;
Potts, Catherine ;
Thornton, Paula ;
McWhirter, Catriona ;
Zubair, Mohammed ;
Pan, Martin ;
Burns, Alistair ;
Cruickshank, J. Kennedy ;
Jayson, Gordon C. ;
Purandare, Nitin ;
Wu, Frederick C. W. ;
Finn, Joe D. ;
Haselden, John N. ;
Nicholls, Andrew W. ;
Wilson, Ian D. ;
Goodacre, Royston ;
Kell, Douglas B. .
METABOLOMICS, 2015, 11 (01) :9-26
[8]  
Edwards B, 2014, FAMILY MATTERS, P5
[9]  
Ellul S., 2018, LONGITUDINAL STUDY A
[10]   Metabolomics in Prediabetes and Diabetes: A Systematic Review and Meta-analysis [J].
Guasch-Ferre, Marta ;
Hruby, Adela ;
Toledo, Estefania ;
Clish, Clary B. ;
Martinez-Gonzalez, Miguel A. ;
Salas-Salvado, Jordi ;
Hu, Frank B. .
DIABETES CARE, 2016, 39 (05) :833-846