A Lawson-type exponential integrator for the Korteweg-de Vries equation

被引:20
作者
Ostermann, Alexander [1 ]
Su, Chunmei [1 ]
机构
[1] Univ Innsbruck, A-6020 Innsbruck, Austria
关键词
exponential integrators; Lawson methods; Korteweg-de Vries equation; error estimates; Rusanov scheme; FOURIER PSEUDOSPECTRAL METHOD; LEGENDRE-PETROV-GALERKIN; FINITE-ELEMENT METHOD; KADOMTSEV-PETVIASHVILI; DIFFERENTIAL-EQUATIONS; NUMERICAL-SOLUTION; OPERATOR; KDV; CONVERGENCE; STABILITY;
D O I
10.1093/imanum/drz030
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose an explicit numerical method for the periodic Korteweg-de Vries equation. Our method is based on a Lawson-type exponential integrator for time integration and the Rusanov scheme for Burgers' nonlinearity. We prove first-order convergence in both space and time under a mild Courant-FriedrichsLewy condition tau = O(h), where tau and h represent the time step and mesh size for solutions in the Sobolev space H-3((-pi, pi)), respectively. Numerical examples illustrating our convergence result are given.
引用
收藏
页码:2399 / 2414
页数:16
相关论文
共 39 条