INTELLIGENT LOW-LEVEL WIND SHEAR ALERT PREDICTION SYSTEM BASED ON ANEMOMETER SENSOR NETWORK AND TEMPORAL CONVOLUTIONAL NETWORK (TCN)

被引:3
作者
Ryan, Muhammad [1 ]
Saputro, Adhi Harmoko [1 ]
Sopaheluwakan, Ardhasena [2 ]
机构
[1] Univ Indonesia, Dept Phys, Jakarta, Indonesia
[2] Agcy Meteorol Climatol & Geophys, Ctr Appl Climate Serv, Jakarta, Indonesia
来源
GEOGRAPHIA TECHNICA | 2022年 / 17卷 / 01期
关键词
Wind shear; Aviation; Machine learning; Geostatistical; Temporal Convolutional Network; NEURAL-NETWORK; LIDAR; WEATHER; FORECAST;
D O I
10.21163/GT_2022.171.07
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Wind shear is one of the dangerous meteorological phenomena for aviation. This phenomenon is significant, especially at the lower level. The duration of wind shear events varies greatly, ranging from short to long. The best way to avoid accidents caused by wind shear is by predicting the event and the duration. Recent studies use Machine Learning (ML) as a nonlinear geostatistical method to predict wind shear utilizing wind observing instruments data. The data is conditioned into temporal data which is fed to the ML model. However, the ML model used is not a temporal ML model for time-series data but a generic model for a common type of data. Many studies claimed temporal models are better than generic ones to tackle temporal data. In this study, we propose Temporal Convolutional Network (TCN) to predict incoming wind shear duration and occurrence using an anemometer sensor network i.e., Low-level Wind Shear Alert System (LLWAS). The wind shear occurrence is derived from wind shear duration prediction. The proposed model is compared with other temporal models, i.e., Long-Short Term Memory (LSTM) and Gated Recurrent Unit (GRU). Different schemes of total predictor were tested to find the best predictor scheme for wind shear prediction. To measure the performance of all models in all schemes, accuracy, False Alarm Ratio (FAR), Probability of Detection (POD), and Root Mean Squared Error (RMSE) metrics are used. The result is TCN dominating almost in all metrics used i.e., Accuracy, FAR, and RMSE for all schemes against LSTM and GRU. Scheme with 4 predictors proved to bring the best performance of all models for wind shear duration prediction. The result proves TCN is the best temporal model for wind shear forecasting using LLWAS. For better wind shear duration prediction, the best scheme choice is the 4-predictor scheme.
引用
收藏
页码:92 / 103
页数:12
相关论文
共 30 条
[1]   Deep learning for plasticity and thermo-viscoplasticity [J].
Abueidda, Diab W. ;
Koric, Seid ;
Sobh, Nahil A. ;
Sehitoglu, Huseyin .
INTERNATIONAL JOURNAL OF PLASTICITY, 2021, 136
[2]  
Bai S., 2018, 6 INT C LEARN REPR V
[3]   Microburst Detection With the WRF Model: Effective Resolution and Forecasting Indices [J].
Bolgiani, Pedro ;
Santos-Munoz, Daniel ;
Fernandez-Gonzalez, Sergio ;
Sastre, Mariano ;
Valero, Francisco ;
Martin, Maria Luisa .
JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2020, 125 (14)
[4]   Performance of super high resolution numerical weather prediction model in forecasting terrain-disrupted airflow at the Hong Kong International Airport: case studies [J].
Chan, P. W. ;
Hon, K. K. .
METEOROLOGICAL APPLICATIONS, 2016, 23 (01) :101-114
[5]  
Chen Y, 2017, ATMOS OCEAN SCI LETT, V10, P411, DOI 10.1080/16742834.2017.1368349
[6]   RESEARCH COLLABORATIONS FOR BETTER PREDICTIONS OF AVIATION WEATHER HAZARDS [J].
Chun, Hye-Yeong ;
Kim, Jung-Hoon ;
Lee, Dan-Bi ;
Kim, Soo-Hyun ;
Strahan, Matt ;
Pettegrew, Brian ;
Gill, Philip ;
Williams, Paul D. ;
Schumann, Ulrich ;
Tenenbaum, Joel ;
Lee, Young-Gon ;
Choi, Hee-Wook ;
Song, In-Sul ;
Park, Ye-Ji ;
Sharman, Robert D. .
BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY, 2017, 98 (05) :ES103-ES107
[7]   Bidirectional Grid Long Short-Term Memory (BiGridLSTM): A Method to Address Context-Sensitivity and Vanishing Gradient [J].
Fei, Hongxiao ;
Tan, Fengyun .
ALGORITHMS, 2018, 11 (11)
[8]  
Gopali S. Abri F., 2022, COMP TCN LSTM MODELS, DOI [10.1109/bigdata52589.2021.9671488, DOI 10.1109/BIGDATA52589.2021.9671488]
[9]   A Review of High Impact Weather for Aviation Meteorology [J].
Gultepe, Ismail ;
Sharman, R. ;
Williams, Paul D. ;
Zhou, Binbin ;
Ellrod, G. ;
Minnis, P. ;
Trier, S. ;
Griffin, S. ;
Yum, Seong. S. ;
Gharabaghi, B. ;
Feltz, W. ;
Temimi, M. ;
Pu, Zhaoxia ;
Storer, L. N. ;
Kneringer, P. ;
Weston, M. J. ;
Chuang, Hui-ya ;
Thobois, L. ;
Dimri, A. P. ;
Dietz, S. J. ;
Franca, Gutemberg B. ;
Almeida, M. V. ;
Albquerque Neto, F. L. .
PURE AND APPLIED GEOPHYSICS, 2019, 176 (05) :1869-1921
[10]   Forecasting short-term solar irradiance based on artificial neural networks and data from neighboring meteorological stations [J].
Gutierrez-Corea, Federico-Vladimir ;
Manso-Callejo, Miguel-Angel ;
Moreno-Regidor, Maria-Pilar ;
Manrique-Sancho, Maria-Teresa .
SOLAR ENERGY, 2016, 134 :119-131