Jordan property for groups of birational selfmaps

被引:47
作者
Prokhorov, Yuri [1 ,2 ,3 ]
Shramov, Constantin [1 ,2 ]
机构
[1] Steklov Inst Math, Moscow 119991, Russia
[2] GU HSE, Lab Algebra Geometry, Moscow 117312, Russia
[3] Moscow MV Lomonosov State Univ, Fac Math, Moscow 117234, Russia
关键词
AUTOMORPHISM-GROUPS; VARIETIES;
D O I
10.1112/S0010437X14007581
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming a particular case of the Borisov Alexeev Borisov conjecture, we prove that finite subgroups of the automorphism group of a finitely generated field over Q have bounded orders. Further, we investigate which algebraic varieties have groups of birational selfmaps satisfying the Jordan property. Unless explicitly stated otherwise, all varieties are assumed to be algebraic, geometrically irreducible and defined over an arbitrary field k of characteristic zero.
引用
收藏
页码:2054 / 2072
页数:19
相关论文
共 28 条
  • [1] [Anonymous], PREPRINT
  • [2] [Anonymous], J ALGEBRAIC GEOM
  • [3] [Anonymous], CAMBRIDGE TRACTS MAT
  • [4] [Anonymous], 1992, ASTERISQUE
  • [5] Functoriality in resolution of singularities
    Bierstone, Edward
    Milman, Pierre D.
    [J]. PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2008, 44 (02) : 609 - 639
  • [6] Existence of log canonical flips and a special LMMP
    Birkar, Caucher
    [J]. PUBLICATIONS MATHEMATIQUES DE L IHES, 2012, (115): : 325 - 368
  • [7] EXISTENCE OF MINIMAL MODELS FOR VARIETIES OF LOG GENERAL TYPE
    Birkar, Caucher
    Cascini, Paolo
    Hacon, Christopher D.
    McKernan, James
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 23 (02) : 405 - 468
  • [8] Curtis C. W., 1962, PURE APPL MATH, VXI
  • [9] Fakhruddin N., 2003, J. Ramanujan Math. Soc., V18, P109
  • [10] Families of rationally connected varieties
    Graber, T
    Harris, J
    Starr, J
    [J]. JOURNAL OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 16 (01) : 57 - 67