Total Weak Roman Domination in Graphs

被引:12
作者
Cabrera Martinez, Abel [1 ]
Montejano, Luis P. [2 ]
Rodriguez-Velazquez, Juan A. [1 ]
机构
[1] Univ Rovira & Virgili, Dept Engn Informat & Matemat, Av Paisos Catalans 26, Tarragona 43007, Spain
[2] Ctr Invest Matemat, CONACYT, Guanajuato 36023, Gto, Mexico
来源
SYMMETRY-BASEL | 2019年 / 11卷 / 06期
关键词
weak Roman domination; total Roman domination; secure total domination; total domination; NP-hard problem; SECURE DOMINATION; PROTECTION;
D O I
10.3390/sym11060831
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Given a graph G=(V,E), a function f:V ->{0,1,2,} is said to be a total dominating function if Sigma u is an element of N(v)f(u)>0 for every v is an element of V, where N(v) denotes the open neighbourhood of v. Let Vi={x is an element of V:f(x)=i}. We say that a function f:V ->{0,1,2} is a total weak Roman dominating function if f is a total dominating function and for every vertex v is an element of V0 there exists u is an element of N(v)(V1V2) such that the function f ', defined by f '(v)=1, f '(u)=f(u)-1 and f '(x)=f(x) whenever x is an element of V\{u,v}, is a total dominating function as well. The weight of a function f is defined to be w(f)=Sigma v is an element of Vf(v). In this article, we introduce the study of the total weak Roman domination number of a graph G, denoted by gamma tr(G), which is defined to be the minimum weight among all total weak Roman dominating functions on G. We show the close relationship that exists between this novel parameter and other domination parameters of a graph. Furthermore, we obtain general bounds on gamma tr(G) and, for some particular families of graphs, we obtain closed formulae. Finally, we show that the problem of computing the total weak Roman domination number of a graph is NP-hard.
引用
收藏
页数:20
相关论文
共 21 条
[1]   TOTAL ROMAN DOMINATION IN GRAPHS [J].
Ahangar, Hossein Abdollahzadeh ;
Henning, Michael A. ;
Samodivkin, Vladimir ;
Yero, Ismael G. .
APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2016, 10 (02) :501-517
[2]  
[Anonymous], 1979, Computers and Intractablity: A Guide to the Theory of NP-Completeness
[3]  
Benecke S, 2007, UTILITAS MATHEMATICA, V74, P247
[4]   Vertex covers and secure domination in graphs [J].
Burger, Alewyn P. ;
Henning, Michael A. ;
van Vuuren, Jan H. .
QUAESTIONES MATHEMATICAE, 2008, 31 (02) :163-171
[5]   Bounds on weak roman and 2-rainbow domination numbers [J].
Chellali, Mustapha ;
Haynes, Teresa W. ;
Hedetniemi, Stephen T. .
DISCRETE APPLIED MATHEMATICS, 2014, 178 :27-32
[6]  
Cockayne E. J., 2003, Bulletin of the Institute of Combinatorics and its Applications, V39, P87
[7]  
Cockayne EJ, 2005, UTILITAS MATHEMATICA, V67, P19
[8]   Roman domination in graphs [J].
Cockayne, EJ ;
Dreyer, PA ;
Hedetniemi, SM ;
Hedetniemi, ST .
DISCRETE MATHEMATICS, 2004, 278 (1-3) :11-22
[9]   On the super domination number of lexicographic product graphs [J].
Dettlaff, M. ;
Lemanska, M. ;
Rodriguez-Velazquez, J. A. ;
Zuazua, R. .
DISCRETE APPLIED MATHEMATICS, 2019, 263 (118-129) :118-129
[10]  
Fernau H., 2014, NOTIONS METRIC DIMEN, P153, DOI [10.1007/978-3-319-06686-8_12, DOI 10.1007/978-3-319-06686-8_12]