Numerical ranges for pairs of operators, duality mappings with gauge function, and spectra of nonlinear operators

被引:1
作者
Appell, Juergen [1 ]
Buica, Adriana
机构
[1] Univ Wurzburg, Dept Math, D-97074 Wurzburg, Germany
[2] Univ Babes Bolyai, Dept Appl Math, RO-400084 Cluj Napoca, Romania
关键词
nonlinear operator; monotone operator; coercive operator; numerical range; nonlinear spectrum; gauge function; duality map; p-Laplace operator; eigenvalue problem;
D O I
10.1007/s00009-006-0060-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define and study numerical ranges for pairs of nonlinear operators F and J which act between some Banach space X and its dual X*, with respect to some increasing gauge function (p. Connections with spectra for certain classes of nonlinear operators introduced recently in the literature are also established. As a sample example, we consider the case when F is the duality map of the Lebesgue space L-p(Omega), J is the duality map of the corresponding Sobolev space W-0(1,P)(Omega), and phi(t) = t(P-1) (1 < p < infinity). This leads to existence, uniqueness, and perturbation results for a homogeneous eigenvalue problem involving the p-Laplace operator.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 25 条
[11]  
Feng W, 1997, Abstr. Appl. Anal., V2, P163
[12]   NONLINEAR SPECTRAL APPROACH TO SUBJECTIVITY IN BANACH-SPACES [J].
FURI, M ;
VIGNOLI, A .
JOURNAL OF FUNCTIONAL ANALYSIS, 1975, 20 (04) :304-318
[13]   NONLINEAR ELLIPTIC BOUNDARY-VALUE PROBLEMS FOR EQUATIONS WITH RAPIDLY (OR SLOWLY) INCREASING COEFFICIENTS [J].
GOSSEZ, JP .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1974, 190 (463) :163-205
[14]   On a nonlinear eigenvalue problem in Orlicz-Sobolev spaces [J].
Gossez, JP ;
Manásevich, R .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2002, 132 :891-909
[15]  
JEBELEAN P, 2001, METODE ANAL NELINIAR
[16]  
KRASNOSELSKII MA, 1951, DOKL AKAD NAUK SSSR, V77, P185
[18]  
Lions Jacques-Louis, 1969, QUELQUES METHODES RE
[19]  
MADDOX IJ, 1989, P ROY IRISH ACAD A, V89, P101
[20]   MONOTONE (NONLINEAR) OPERATORS IN HILBERT SPACE [J].
MINTY, GJ .
DUKE MATHEMATICAL JOURNAL, 1962, 29 (03) :341-&