Numerical ranges for pairs of operators, duality mappings with gauge function, and spectra of nonlinear operators

被引:1
作者
Appell, Juergen [1 ]
Buica, Adriana
机构
[1] Univ Wurzburg, Dept Math, D-97074 Wurzburg, Germany
[2] Univ Babes Bolyai, Dept Appl Math, RO-400084 Cluj Napoca, Romania
关键词
nonlinear operator; monotone operator; coercive operator; numerical range; nonlinear spectrum; gauge function; duality map; p-Laplace operator; eigenvalue problem;
D O I
10.1007/s00009-006-0060-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We define and study numerical ranges for pairs of nonlinear operators F and J which act between some Banach space X and its dual X*, with respect to some increasing gauge function (p. Connections with spectra for certain classes of nonlinear operators introduced recently in the literature are also established. As a sample example, we consider the case when F is the duality map of the Lebesgue space L-p(Omega), J is the duality map of the corresponding Sobolev space W-0(1,P)(Omega), and phi(t) = t(P-1) (1 < p < infinity). This leads to existence, uniqueness, and perturbation results for a homogeneous eigenvalue problem involving the p-Laplace operator.
引用
收藏
页码:1 / 13
页数:13
相关论文
共 25 条
[1]  
Akhmerov R., 1992, OPER THEORY ADV APPL, V55
[2]  
Appell J, 2004, DEGRUYTER SER NONLIN, V10, P1, DOI 10.1515/9783110199260
[3]   Some properties of nonlinear adjoint operators [J].
Buryskova, V .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1998, 28 (01) :41-59
[4]  
Chabrowski J., 1995, Differential and Integral Equations, V8, P705
[5]   Holder continuity of the inverse of p-Laplacian [J].
Cheng, YJ .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1998, 221 (02) :734-748
[6]  
Darbo G., 1955, REND SEMIN MAT U PAD, V24, P84
[7]   A Fredholm-type result for a couple of nonlinear operators [J].
Dinca, G .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 333 (05) :415-419
[8]   Some existence results for a class of nonlinear equations involving a duality mapping [J].
Dinca, G ;
Jebelean, P .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (03) :347-363
[9]  
Dinca G., 2001, PORT MATH, V58, P339
[10]   A counterexample to the Fredholm alternative for the p-Laplacian [J].
Drábek, P ;
Takác, P .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (04) :1079-1087