Bernstein-type operators in Chebyshev spaces

被引:22
作者
Mazure, Marie-Laurence [1 ]
机构
[1] Univ Grenoble 1, Lab Jean Kuntzmann, F-38041 Grenoble 9, France
关键词
Bernstein-type bases; Bernstein-type operators; Extended Chebyshev spaces; Total positivity; Shape preservation; Blossoms;
D O I
10.1007/s11075-008-9260-1
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We prove that it is possible to construct Bernstein-type operators in any given Extended Chebyshev space and we show how they are connected with blossoms. This generalises and explains a recent result by Aldas/Kounchev/Render on exponential spaces. We also indicate why such operators automatically possess interesting shape preserving properties and why similar operators exist in still more general frameworks, e.g., in Extended Chebyshev Piecewise spaces. We address the problem of convergence of infinite sequences of such operators, and we do prove convergence for special instances of Muntz spaces.
引用
收藏
页码:93 / 128
页数:36
相关论文
共 30 条
[1]  
ALDAZ JM, 2008, CONSTR APPROX
[2]  
Bernstein S., 1912, Communications De La Societe Mathematique De Kharkow. 2-Ee Serie, V13, P1
[3]  
Bister D., 1997, CURVES SURFACES APPL, P35
[4]  
BISTER D, 1997, THESIS AACHEN
[5]   Critical length for design purposes and extended Chebyshev spaces [J].
Carnicer, JM ;
Mainar, E ;
Peña, JM .
CONSTRUCTIVE APPROXIMATION, 2003, 20 (01) :55-71
[6]  
Carnicer JM, 1996, MATH APPL, V359, P133
[7]   On a class of weak Tchebycheff systems [J].
Costantini, P ;
Lyche, T ;
Manni, C .
NUMERISCHE MATHEMATIK, 2005, 101 (02) :333-354
[8]   Curve and surface construction using variable degree polynomial splines [J].
Costantini, P .
COMPUTER AIDED GEOMETRIC DESIGN, 2000, 17 (05) :419-446
[9]  
Goodman TNT, 1996, MATH APPL, V359, P157
[10]  
Karlin S., 1968, Total positivity