Discrete Breathers in a Forced-Damped Array of Coupled Pendula: Modeling, Computation, and Experiment

被引:80
作者
Cuevas, J. [1 ]
English, L. Q. [2 ]
Kevrekidis, P. G. [3 ]
Anderson, M. [2 ]
机构
[1] Univ Seville, Dept Fis Aplicada 1, Escuela Univ Politecn, Seville 41011, Spain
[2] Dickinson Coll, Dept Phys & Astron, Carlisle, PA 17013 USA
[3] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
关键词
NONLINEAR SCHRODINGER-EQUATION; AC-DRIVEN; STABILITY PROPERTIES; EXISTENCE; SOLITONS; MULTIBREATHERS; LATTICES; SYSTEMS; MODES;
D O I
10.1103/PhysRevLett.102.224101
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this work, we present a mechanical example of an experimental realization of a stability reversal between on-site and intersite centered localized modes. A corresponding realization of a vanishing of the Peierls-Nabarro barrier allows for an experimentally observed enhanced mobility of the localized modes near the reversal point. These features are supported by detailed numerical computations of the stability and mobility of the discrete breathers in this system of forced and damped coupled pendula. Furthermore, additional exotic features of the relevant model, such as dark breathers are briefly discussed.
引用
收藏
页数:4
相关论文
共 24 条
[1]   Dark breathers in Klein-Gordon lattices. band analysis of their stability properties [J].
Alvarez, A ;
Archilla, JFR ;
Cuevas, J ;
Romero, FR .
NEW JOURNAL OF PHYSICS, 2002, 4 :72.1-72.19
[2]   Demonstration of the stability or instability of multibreathers at low coupling [J].
Archilla, JFR ;
Cuevas, J ;
Sánchez-Rey, B ;
Alvarez, A .
PHYSICA D-NONLINEAR PHENOMENA, 2003, 180 (3-4) :235-255
[3]   SPACE-TIME PATTERN-FORMATION AND CONVERSION IN THE DC-DRIVEN, DAMPED SINE-GORDON EQUATION [J].
ARIYASU, JC ;
BISHOP, AR .
PHYSICAL REVIEW B, 1987, 35 (07) :3207-3214
[4]   Breathers in nonlinear lattices: Existence, linear stability and quantization [J].
Aubry, S .
PHYSICA D-NONLINEAR PHENOMENA, 1997, 103 (1-4) :201-250
[5]   Existence threshold for the ac-driven damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Zemlyanaya, EV .
PHYSICA D-NONLINEAR PHENOMENA, 1999, 132 (03) :363-372
[6]   Bifurcation to multisoliton complexes in the ac-driven, damped nonlinear Schrodinger equation [J].
Barashenkov, IV ;
Smirnov, YS ;
Alexeeva, NV .
PHYSICAL REVIEW E, 1998, 57 (02) :2350-2364
[7]   Existence and stability chart for the ac-driven, damped nonlinear Schrodinger solitons [J].
Barashenkov, IV ;
Smirnov, YS .
PHYSICAL REVIEW E, 1996, 54 (05) :5707-5725
[8]   LENGTH-SCALE COMPETITION IN THE DAMPED SINE-GORDON CHAIN WITH SPATIOTEMPORAL PERIODIC DRIVING [J].
CAI, D ;
BISHOP, AR ;
SANCHEZ, A .
PHYSICAL REVIEW E, 1993, 48 (02) :1447-1452
[9]   Localizing energy through nonlinearity and discreteness [J].
Campbell, DK ;
Flach, S ;
Kivshar, YS .
PHYSICS TODAY, 2004, 57 (01) :43-49
[10]   Multistable solitons in the cubic-quintic discrete nonlinear Schrodinger equation [J].
Carretero-Gonzalez, R. ;
Talley, J. D. ;
Chong, C. ;
Malomed, B. A. .
PHYSICA D-NONLINEAR PHENOMENA, 2006, 216 (01) :77-89