MultiBUGS: A Parallel Implementation of the BUGS Modeling Framework for Faster Bayesian Inference

被引:31
作者
Goudie, Robert J. B. [1 ]
Turner, Rebecca M. [2 ]
De Angelis, Daniela [3 ]
Thomas, Andrew [1 ]
机构
[1] Univ Cambridge, Sch Clin Med, MRC Biostat Unit, Cambridge, England
[2] UCL, London, England
[3] Univ Cambridge, Cambridge, England
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 95卷 / 07期
基金
英国医学研究理事会;
关键词
BUGS; parallel computing; Markov chain Monte Carlo; Gibbs sampling; Bayesian analysis; hierarchical models; directed acyclic graph; MONTE-CARLO METHODS; ALGORITHMS;
D O I
10.18637/jss.v095.i07
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
MultiBUGS is a new version of the general-purpose Bayesian modeling software BUGS that implements a generic algorithm for parallelizing Markov chain Monte Carlo (MCMC) algorithms to speed up posterior inference of Bayesian models. The algorithm parallelizes evaluation of the product-form likelihoods formed when a parameter has many children in the directed acyclic graph (DAG) representation; and parallelizes sampling of conditionally-independent sets of parameters. A heuristic algorithm is used to decide which approach to use for each parameter and to apportion computation across computational cores. This enables MultiBUGS to automatically parallelize the broad range of statistical models that can be fitted using BUGS-language software, making the dramatic speed-ups of modern multi-core computing accessible to applied statisticians, without requiring any experience of parallel programming. We demonstrate the use of MultiBUGS on simulated data designed to mimic a hierarchical e-health linked-data study of methadone prescriptions including 425,112 observations and 20,426 random effects. Posterior inference for the e-health model takes several hours in existing software, but MultiBUGS can perform inference in only 28 minutes using 48 computational cores.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 34 条
  • [11] Stan: A Probabilistic Programming Language
    Carpenter, Bob
    Gelman, Andrew
    Hoffman, Matthew D.
    Lee, Daniel
    Goodrich, Ben
    Betancourt, Michael
    Brubaker, Marcus A.
    Guo, Jiqiang
    Li, Peter
    Riddell, Allen
    [J]. JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01): : 1 - 29
  • [12] Crowder M. J., 1978, APPLIED STATISTICS, V27, P34, DOI DOI 10.2307/2346223
  • [13] Programming With Models: Writing Statistical Algorithms for General Model Structures With NIMBLE
    de Valpine, Perry
    Turek, Daniel
    Paciorek, Christopher J.
    Anderson-Bergman, Clifford
    Lang, Duncan Temple
    Bodik, Rastislav
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2017, 26 (02) : 403 - 413
  • [14] Dimitropoulou P, 2017, METHADONE PRES UNPUB
  • [15] Risk-factors for methadone-specific deaths in Scotland's methadone-prescription clients between 2009 and 2013
    Gao, Lu
    Dimitropoulou, Polyxeni
    Robertson, J. Roy
    McTaggart, Stuart
    Bennie, Marion
    Bird, Sheila M.
    [J]. DRUG AND ALCOHOL DEPENDENCE, 2016, 167 : 214 - 223
  • [16] SAMPLING-BASED APPROACHES TO CALCULATING MARGINAL DENSITIES
    GELFAND, AE
    SMITH, AFM
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1990, 85 (410) : 398 - 409
  • [17] Gelman A., 1992, Statistical Science, V7, P457, DOI DOI 10.1214/SS/1177011136
  • [18] STOCHASTIC RELAXATION, GIBBS DISTRIBUTIONS, AND THE BAYESIAN RESTORATION OF IMAGES
    GEMAN, S
    GEMAN, D
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 1984, 6 (06) : 721 - 741
  • [19] Joining and Splitting Models with Markov Melding
    Goudie, Robert J. B.
    Presanis, Anne M.
    Lunn, David
    De Angelis, Daniela
    Wernisch, Lorenz
    [J]. BAYESIAN ANALYSIS, 2019, 14 (01): : 81 - 109
  • [20] Bayesian Analysis for Emerging Infectious Diseases
    Jewell, Chris P.
    Kypraios, Theodore
    Neal, Peter
    Roberts, Gareth O.
    [J]. BAYESIAN ANALYSIS, 2009, 4 (03): : 465 - 496