MultiBUGS: A Parallel Implementation of the BUGS Modeling Framework for Faster Bayesian Inference

被引:31
作者
Goudie, Robert J. B. [1 ]
Turner, Rebecca M. [2 ]
De Angelis, Daniela [3 ]
Thomas, Andrew [1 ]
机构
[1] Univ Cambridge, Sch Clin Med, MRC Biostat Unit, Cambridge, England
[2] UCL, London, England
[3] Univ Cambridge, Cambridge, England
来源
JOURNAL OF STATISTICAL SOFTWARE | 2020年 / 95卷 / 07期
基金
英国医学研究理事会;
关键词
BUGS; parallel computing; Markov chain Monte Carlo; Gibbs sampling; Bayesian analysis; hierarchical models; directed acyclic graph; MONTE-CARLO METHODS; ALGORITHMS;
D O I
10.18637/jss.v095.i07
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
MultiBUGS is a new version of the general-purpose Bayesian modeling software BUGS that implements a generic algorithm for parallelizing Markov chain Monte Carlo (MCMC) algorithms to speed up posterior inference of Bayesian models. The algorithm parallelizes evaluation of the product-form likelihoods formed when a parameter has many children in the directed acyclic graph (DAG) representation; and parallelizes sampling of conditionally-independent sets of parameters. A heuristic algorithm is used to decide which approach to use for each parameter and to apportion computation across computational cores. This enables MultiBUGS to automatically parallelize the broad range of statistical models that can be fitted using BUGS-language software, making the dramatic speed-ups of modern multi-core computing accessible to applied statisticians, without requiring any experience of parallel programming. We demonstrate the use of MultiBUGS on simulated data designed to mimic a hierarchical e-health linked-data study of methadone prescriptions including 425,112 observations and 20,426 random effects. Posterior inference for the e-health model takes several hours in existing software, but MultiBUGS can perform inference in only 28 minutes using 48 computational cores.
引用
收藏
页码:1 / 20
页数:20
相关论文
共 34 条
  • [1] Amdahl G.M., 1967, AFIPS CONF P, P483, DOI 10.1145/1465482.1465560
  • [2] Angelino E, 2014, UNCERTAINTY IN ARTIFICIAL INTELLIGENCE, P22
  • [3] [Anonymous], 2009, CAUSALITY
  • [4] [Anonymous], 1996, Bugs 0.5: Bayesian inference using Gibbs sampling, manual (version ii)
  • [5] GUESS-ing Polygenic Associations with Multiple Phenotypes Using a GPU-Based Evolutionary Stochastic Search Algorithm
    Bottolo, Leonardo
    Chadeau-Hyam, Marc
    Hastie, David I.
    Zeller, Tanja
    Liquet, Benoit
    Newcombe, Paul
    Yengo, Loic
    Wild, Philipp S.
    Schillert, Arne
    Ziegler, Andreas
    Nielsen, Sune F.
    Butterworth, Adam S.
    Ho, Weang Kee
    Castagne, Raphaele
    Munzel, Thomas
    Tregouet, David
    Falchi, Mario
    Cambien, Francois
    Nordestgaard, Borge G.
    Fumeron, Frederic
    Tybjaerg-Hansen, Anne
    Froguel, Philippe
    Danesh, John
    Petretto, Enrico
    Blankenberg, Stefan
    Tiret, Laurence
    Richardson, Sylvia
    [J]. PLOS GENETICS, 2013, 9 (08):
  • [6] Markov chain Monte Carlo methods for family trees using parallel processor
    Bradford, R
    Thomas, A
    [J]. STATISTICS AND COMPUTING, 1996, 6 (01) : 67 - 75
  • [7] APPROXIMATE INFERENCE IN GENERALIZED LINEAR MIXED MODELS
    BRESLOW, NE
    CLAYTON, DG
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 1993, 88 (421) : 9 - 25
  • [8] Parallel Markov chain Monte Carlo simulation by pre-fetching
    Brockwell, AE
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 2006, 15 (01) : 246 - 261
  • [9] General methods for monitoring convergence of iterative simulations
    Brooks, SP
    Gelman, A
    [J]. JOURNAL OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 1998, 7 (04) : 434 - 455
  • [10] A general construction for parallelizing Metropolis-Hastings algorithms
    Calderhead, Ben
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2014, 111 (49) : 17408 - 17413