Bound State Solutions of the Klein-Gordon Equation for the Mathews-Lakshmanan Oscillator

被引:2
作者
Schulze-Halberg, Axel [1 ,2 ]
Wang, Jie [3 ]
机构
[1] Indiana Univ Northwest, Dept Math & Actuarial Sci, Gary, IN 46408 USA
[2] Indiana Univ Northwest, Dept Phys, Gary, IN 46408 USA
[3] Indiana Univ Northwest, Dept Comp Informat Syst, Gary, IN 46408 USA
关键词
POSITION-DEPENDENT MASS; NONLINEAR OSCILLATOR; POTENTIALS; VECTOR; MODEL;
D O I
10.1007/s00601-014-0908-1
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study a boundary-value problem for the Klein-Gordon equation that is inspired by the well-known Mathews-Lakshmanan oscillator model. By establishing a link to the spheroidal equation, we show that our problem admits an infinite number of discrete energies, together with associated solutions that form an orthogonal set in a weighted L (2)-Hilbert space.
引用
收藏
页码:1223 / 1232
页数:10
相关论文
共 20 条
  • [1] Abramowitz M., 1964, HDB MATH FUNCTIONS F
  • [2] Approximate analytical solutions of the Klein-Gordon equation for the Hulthen potential with the position-dependent mass
    Arda, Altug
    Sever, Ramazan
    Tezcan, Cevdet
    [J]. PHYSICA SCRIPTA, 2009, 79 (01)
  • [3] One-dimensional model of a quantum nonlinear harmonic oscillator
    Cariñena, JF
    Rañada, MF
    Santander, M
    [J]. REPORTS ON MATHEMATICAL PHYSICS, 2004, 54 (02) : 285 - 293
  • [4] A non-linear oscillator with quasi-harmonic behaviour:: two- and n-dimensional oscillators
    Cariñena, JF
    Rañada, MF
    Santander, M
    Senthilvelan, M
    [J]. NONLINEARITY, 2004, 17 (05) : 1941 - 1963
  • [5] A quantum exactly solvable non-linear oscillator with quasi-harmonic behaviour
    Carinena, Jose F.
    Ranada, Manuel F.
    Santander, Mariano
    [J]. ANNALS OF PHYSICS, 2007, 322 (02) : 434 - 459
  • [6] The quantum free particle on spherical and hyperbolic spaces: A curvature dependent approach. II
    Carinena, Jose F.
    Ranada, Manuel F.
    Santander, Mariano
    [J]. JOURNAL OF MATHEMATICAL PHYSICS, 2012, 53 (10)
  • [7] Klein-Gordon equation with Hulth'en potential and position-dependent mass
    Farrokh, M.
    Shojaei, M. R.
    Rajabi, A. A.
    [J]. EUROPEAN PHYSICAL JOURNAL PLUS, 2013, 128 (02):
  • [8] DYNAMICAL SYMMETRIES IN A SPHERICAL GEOMETRY-I
    HIGGS, PW
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1979, 12 (03): : 309 - 323
  • [9] Exact Klein-Gordon equation with spatially dependent masses for unequal scalar-vector Coulomb-like potentials
    Ikhdair, S. M.
    [J]. EUROPEAN PHYSICAL JOURNAL A, 2009, 40 (02) : 143 - 149
  • [10] Exact Solutions of the Klein-Gordon Equation with Position-Dependent Mass for Mixed Vector and Scalar Kink-Like Potentials
    Jia, Chun-Sheng
    Li, Xiao-Ping
    Zhang, Lie-Hui
    [J]. FEW-BODY SYSTEMS, 2012, 52 (1-2) : 11 - 18