Radial diffusion simulations of the 20 September 2007 radiation belt dropout

被引:8
作者
Albert, J. [1 ]
机构
[1] Air Force Res Lab, Kirtland AFB, NM 87117 USA
关键词
Magnetospheric physics; energetic particles; trapped; EMIC WAVES; ELECTRONS; LOSSES; MODEL;
D O I
10.5194/angeo-32-925-2014
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
This is a study of a dropout of radiation belt electrons, associated with an isolated solar wind density pulse on 20 September 2007, as seen by the solid-state telescopes (SST) detectors on THEMIS (Time History of Events and Macroscale Interactions during Substorms). Omnidirectional fluxes were converted to phase space density at constant invariants M = 700MeVG(-1) and K = 0.014R(E) G(1/2), with the assumption of local pitch angle alpha approximate to 80 degrees and using the T04 magnetic field model. The last closed drift shell, which was calculated throughout the time interval, never came within the simulation outer boundary of L* = 6. It is found, using several different models for diffusion rates, that radial diffusion alone only allows the data-driven, time-dependent boundary values at L-max = 6 and L-min = 3.7 to propagate a few tenths of an R-E during the simulation; far too slow to account for the dropout observed over the broad range of L* = 4-5.5. Pitch angle diffusion via resonant interactions with several types of waves (chorus, electromagnetic ion cyclotron waves, and plasmaspheric and plume hiss) also seems problematic, for several reasons which are discussed.
引用
收藏
页码:925 / 934
页数:10
相关论文
共 49 条
[1]  
Albert J. M., 2012, AGU GEOPHYS MONOGRAP, V199
[2]   Three-dimensional diffusion simulation of outer radiation belt electrons during the 9 October 1990 magnetic storm [J].
Albert, Jay M. ;
Meredith, Nigel P. ;
Horne, Richard B. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
[3]   Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave [J].
Albert, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A9) :21191-21209
[4]   Nonlinear interaction of outer zone electrons with VLF waves [J].
Albert, JM .
GEOPHYSICAL RESEARCH LETTERS, 2002, 29 (08) :116-1
[5]   Evaluation of quasi-linear diffusion coefficients for EMIC waves in a multispecies plasma [J].
Albert, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2003, 108 (A6)
[6]   First results from the THEMIS mission [J].
Angelopoulos, V. ;
Sibeck, D. ;
Carlson, C.W. ;
McFadden, J.P. ;
Larson, D. ;
Lin, R.P. ;
Bonnell, J.W. ;
Mozer, F.S. ;
Ergun, R. ;
Cully, C. ;
Glassmeier, K.H. ;
Auster, U. ;
Roux, A. ;
Lecontel, O. ;
Frey, S. ;
Phan, T. ;
Mende, S. ;
Frey, H. ;
Donovan, E. ;
Russell, C.T. ;
Strangeway, R. ;
Liu, J. ;
Mann, I. ;
Rae, J. ;
Raeder, J. ;
Li, X. ;
Liu, W. ;
Singer, H.J. ;
Sergeev, V.A. ;
Apatenkov, S. ;
Parks, G. ;
Fillingim, M. ;
Sigwarth, J. .
Space Science Reviews, 2008, 141 (1-4) :453-476
[7]   Relativistic-electron dropouts and recovery: A superposed epoch study of the magnetosphere and the solar wind [J].
Borovsky, Joseph E. ;
Denton, Michael H. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2009, 114
[8]   Transit time scattering of energetic electrons due to equatorially confined magnetosonic waves [J].
Bortnik, J. ;
Thorne, R. M. .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2010, 115
[9]   Radial diffusion analysis of outer radiation belt electrons during the October 9, 1990, magnetic storm [J].
Brautigam, DH ;
Albert, JM .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 2000, 105 (A1) :291-309
[10]   AN ISEE/WHISTLER MODEL OF EQUATORIAL ELECTRON-DENSITY IN THE MAGNETOSPHERE [J].
CARPENTER, DL ;
ANDERSON, RR .
JOURNAL OF GEOPHYSICAL RESEARCH-SPACE PHYSICS, 1992, 97 (A2) :1097-1108