Accelerating Real-time LiDAR Data Processing using GPUs

被引:0
作者
Venugopal, Vivek [1 ]
Kannan, Suresh [1 ]
机构
[1] United Technol Res Ctr, E Hartford, CT 06108 USA
来源
2013 IEEE 56TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS) | 2013年
关键词
LiDAR; parallel processing; graphics processing units; unmanned autonomous vehicles;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Light Detection and Ranging (LiDAR) sensors are used for acquiring high density topographical data with extremely high spatial resolution. Many LiDAR-based applications, e. g. unmanned autonomous ground and air vehicles require real-time processing capabilities for navigation. The processing of the massive LiDAR data is time consuming due to the magnitude of the data produced and also due to the computationally iterative nature of the algorithms. Graphics Processing Units (GPU) consist of massively parallel cores, have high memory bandwidth and are being widely used as specialized hardware accelerators. A GPU-based parallel LiDAR processing algorithm is implemented with GPU specific memory architecture optimizations. The GPU implementation in this study significantly reduces the processing time of the LiDAR data as compared to CPU-based implementation.
引用
收藏
页码:1168 / 1171
页数:4
相关论文
共 50 条
[41]   Accelerating Set Similarity Joins Using GPUs [J].
Cruz, Mateus S. H. ;
Kozawa, Yusuke ;
Amagasa, Toshiyuki ;
Kitagawa, Hiroyuki .
TRANSACTIONS ON LARGE-SCALE DATA- AND KNOWLEDGE-CENTERED SYSTEMS XXVIII: SPECIAL ISSUE ON DATABASE- AND EXPERT-SYSTEMS APPLICATIONS, 2016, 9940 :1-22
[42]   Implementing textural features on GPUs for improved real-time pavement distress detection [J].
Kristina Doycheva ;
Christian Koch ;
Markus König .
Journal of Real-Time Image Processing, 2019, 16 :1383-1394
[43]   Implementing textural features on GPUs for improved real-time pavement distress detection [J].
Doycheva, Kristina ;
Koch, Christian ;
Koenig, Markus .
JOURNAL OF REAL-TIME IMAGE PROCESSING, 2019, 16 (05) :1383-1394
[44]   An Experimental Evaluation of Debayering Algorithms on GPUs for Recording Panoramic Video in Real-Time [J].
Langseth, Ragnar ;
Gaddam, Vamsidhar Reddy ;
Stensland, Hakon Kvale ;
Griwodz, Carsten ;
Halvorsen, Pal ;
Johansen, Dag .
INTERNATIONAL JOURNAL OF MULTIMEDIA DATA ENGINEERING & MANAGEMENT, 2015, 6 (03) :1-16
[45]   Low-drift and real-time lidar odometry and mapping [J].
Ji Zhang ;
Sanjiv Singh .
Autonomous Robots, 2017, 41 :401-416
[46]   Integrating BIM and LiDAR for Real-Time Construction Quality Control [J].
Wang, Jun ;
Sun, Weizhuo ;
Shou, Wenchi ;
Wang, Xiangyu ;
Wu, Changzhi ;
Chong, Heap-Yih ;
Liu, Yan ;
Sun, Cenfei .
JOURNAL OF INTELLIGENT & ROBOTIC SYSTEMS, 2015, 79 (3-4) :417-432
[47]   Integrating BIM and LiDAR for Real-Time Construction Quality Control [J].
Jun Wang ;
Weizhuo Sun ;
Wenchi Shou ;
Xiangyu Wang ;
Changzhi Wu ;
Heap-Yih Chong ;
Yan Liu ;
Cenfei Sun .
Journal of Intelligent & Robotic Systems, 2015, 79 :417-432
[48]   Real-Time Fast Channel Clustering for LiDAR Point Cloud [J].
Zhang, Xiao ;
Huang, Xinming .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS II-EXPRESS BRIEFS, 2022, 69 (10) :4103-4107
[49]   Low-drift and real-time lidar odometry and mapping [J].
Zhang, Ji ;
Singh, Sanjiv .
AUTONOMOUS ROBOTS, 2017, 41 (02) :401-416
[50]   Configurable processing for real-time spectral estimation [J].
Madeira, M ;
Bellis, S ;
Ruano, G ;
Marnane, W .
ALGORITHMS AND ARCHITECTURES FOR REAL-TIME CONTROL 1998 (AARTC'98), 1998, :179-184