Accelerating Real-time LiDAR Data Processing using GPUs

被引:0
|
作者
Venugopal, Vivek [1 ]
Kannan, Suresh [1 ]
机构
[1] United Technol Res Ctr, E Hartford, CT 06108 USA
来源
2013 IEEE 56TH INTERNATIONAL MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS (MWSCAS) | 2013年
关键词
LiDAR; parallel processing; graphics processing units; unmanned autonomous vehicles;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Light Detection and Ranging (LiDAR) sensors are used for acquiring high density topographical data with extremely high spatial resolution. Many LiDAR-based applications, e. g. unmanned autonomous ground and air vehicles require real-time processing capabilities for navigation. The processing of the massive LiDAR data is time consuming due to the magnitude of the data produced and also due to the computationally iterative nature of the algorithms. Graphics Processing Units (GPU) consist of massively parallel cores, have high memory bandwidth and are being widely used as specialized hardware accelerators. A GPU-based parallel LiDAR processing algorithm is implemented with GPU specific memory architecture optimizations. The GPU implementation in this study significantly reduces the processing time of the LiDAR data as compared to CPU-based implementation.
引用
收藏
页码:1168 / 1171
页数:4
相关论文
共 50 条
  • [1] Real-Time Road Segmentation Using LiDAR Data Processing on an FPGA
    Lyu, Yecheng
    Bai, Lin
    Huang, Xinming
    2018 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2018,
  • [2] SROM: Simple Real-time Odometry and Mapping using LiDAR data for Autonomous
    Rufus, Nivedita
    Nair, Unni Krishnan R.
    Kumar, A. V. S. Sai Bhargav
    Madiraju, Vashist
    Krishna, K. Madhava
    2020 IEEE INTELLIGENT VEHICLES SYMPOSIUM (IV), 2020, : 1867 - 1872
  • [3] Real-time mapping of an industrial flare using LIDAR
    da Costa, Renata F.
    Steffens, Juliana
    Landulfo, E.
    Guardani, Roberto
    Nakaema, W. M.
    Moreira, Paulo F., Jr.
    Lopes, Fabio J. S.
    Ferrini, Patricia
    LIDAR TECHNOLOGIES, TECHNIQUES, AND MEASUREMENTS FOR ATMOSPHERIC REMOTE SENSING VII, 2011, 8182
  • [4] Real-time data processing on graphics processors
    Lipowski, J
    PHOTONICS APPLICATIONS IN ASTRONOMY, COMMUNICATIONS, INDUSTRY, AND HIGH-ENERGY PHYSICS EXPERIMENTS IV, 2006, 6159
  • [5] ChipNet: Real-Time LiDAR Processing for Drivable Region Segmentation on an FPGA
    Lyu, Yecheng
    Bai, Lin
    Huang, Xinming
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS I-REGULAR PAPERS, 2019, 66 (05) : 1769 - 1779
  • [6] Real-time classification of LIDAR data using discrete-time Recurrent Spiking Neural Networks
    Vicol, Anca-Diana
    Yin, Bojian
    Bohte, Sander M.
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [7] Distributed Real-Time Image Processing of Formation Flying SAR Based on Embedded GPUs
    Yang, Tao
    Xu, Qingbo
    Meng, Fanteng
    Zhang, Shuangxi
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2022, 15 : 6495 - 6505
  • [8] PRECISE RADIONUCLIDE LOCALIZATION USING UAV-BASED LIDAR AND GAMMA PROBE WITH REAL-TIME PROCESSING
    Schraml, S.
    Hinterhofer, T.
    Pfennigbauer, M.
    Hofstaetter, M.
    ISPRS ICWG III/IVA GI4DM 2019 - GEOINFORMATION FOR DISASTER MANAGEMENT, 2019, 42-3 (W8): : 503 - 508
  • [9] Towards Real-Time Traffic Monitoring using Airborne LiDAR
    Watanabe, Rafael Akio Alves
    Sorour, Sameh
    Hefeida, Mohamed
    Abdel-Rahim, Ahmed
    2019 IEEE WIRELESS COMMUNICATIONS AND NETWORKING CONFERENCE (WCNC), 2019,
  • [10] Real-Time Object Classification for Autonomous Vehicle using LIDAR
    Yoshioka, Masaru
    Suganuma, Naoki
    Yoneda, Keisuke
    Aldibaja, Mohammad
    2017 2ND INTERNATIONAL CONFERENCE ON INTELLIGENT INFORMATICS AND BIOMEDICAL SCIENCES (ICIIBMS), 2017, : 210 - 211