One-point localization for branching random walk in Pareto environment

被引:3
作者
Ortgiese, Marcel [1 ]
Roberts, Matthew I. [1 ]
机构
[1] Univ Bath, Claverton Down, Bath BA2 7AY, Avon, England
来源
ELECTRONIC JOURNAL OF PROBABILITY | 2017年 / 22卷
基金
英国工程与自然科学研究理事会;
关键词
branching random walk; random environment; parabolic Anderson; intermittency; localization; PARABOLIC ANDERSON MODEL; INTERMITTENCY;
D O I
10.1214/16-EJP22
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider a branching random walk on the lattice, where the branching rates are given by an i.i.d. Pareto random potential. We show a very strong form of intermittency, where with high probability most of the mass of the system is concentrated in a single site with high potential. The analogous one-point localization is already known for the parabolic Anderson model, which describes the expected number of particles in the same system. In our case, we rely on very fine estimates for the behaviour of particles near a good point. This complements our earlier results that in the rescaled picture most of the mass is concentrated on a small island.
引用
收藏
页数:20
相关论文
共 12 条
  • [1] Albeverio S., 2000, Markov Process. Relat. Fields, V6, P473
  • [2] [Anonymous], 2016, PATHWAYS MATH 11, DOI DOI 10.1007/978-3-319-33596-4
  • [3] Gärtner J, 2005, INTERACTING STOCHASTIC SYSTEMS, P153, DOI 10.1007/3-540-27110-4_8
  • [4] PARABOLIC PROBLEMS FOR THE ANDERSON MODEL .1. INTERMITTENCY AND RELATED TOPICS
    GARTNER, J
    MOLCHANOV, SA
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1990, 132 (03) : 613 - 655
  • [5] Moment asymptotics for branching random walks in random environment
    Guen, Onur
    Koenig, Wolfgang
    Sekulovic, Ozren
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2013, 18
  • [6] Harris S.C., 2016, ANN I H POI IN PRESS
  • [7] A TWO CITIES THEOREM FOR THE PARABOLIC ANDERSON MODEL
    Koenig, Wolfgang
    Lacoin, Hubert
    Moerters, Peter
    Sidorova, Nadia
    [J]. ANNALS OF PROBABILITY, 2009, 37 (01) : 347 - 392
  • [8] Mörters P, 2011, EMS SER CONGR REP, P67
  • [9] Ageing in the parabolic Anderson model
    Moerters, Peter
    Ortgiese, Marcel
    Sidorova, Nadia
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2011, 47 (04): : 969 - 1000
  • [10] Ortgiese M., 2016, ARXIV160208997