Engineering in Medicine To Address the Challenge of Cancer Drug Resistance: From Micro- and Nanotechnologies to Computational and Mathematical Modeling

被引:48
作者
Craig, Morgan [1 ,2 ]
Jenner, Adrianne L. [1 ,2 ]
Namgung, Bumseok [3 ,4 ]
Lee, Luke P. [3 ,4 ]
Goldman, Aaron [3 ,4 ]
机构
[1] Univ Montreal, Dept Math & Stat, Montreal, PQ H3C 3J7, Canada
[2] St Justine Univ Hosp, Res Ctr, Montreal, PQ H3S 2G4, Canada
[3] Brigham & Womens Hosp, Div Engn Med, 75 Francis St, Boston, MA 02115 USA
[4] Harvard Med Sch, Dept Med, Boston, MA 02139 USA
基金
加拿大自然科学与工程研究理事会;
关键词
SINGLE-CELL ANALYSIS; GROWTH-FACTOR-BETA; PHOTODYNAMIC THERAPY; TUMOR HETEROGENEITY; ACQUIRED-RESISTANCE; CHECKPOINT BLOCKADE; MULTIDRUG-RESISTANCE; CISPLATIN RESISTANCE; PHOTOTHERMAL THERAPY; MOLECULAR EVOLUTION;
D O I
10.1021/acs.chemrev.0c00356
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Drug resistance has profoundly limited the success of cancer treatment, driving relapse, metastasis, and mortality. Nearly all anticancer drugs and even novel immunotherapies, which recalibrate the immune system for tumor recognition and destruction, have succumbed to resistance development. Engineers have emerged across mechanical, physical, chemical, mathematical, and biological disciplines to address the challenge of drug resistance using a combination of interdisciplinary tools and skill sets. This review explores the developing, complex, and under-recognized role of engineering in medicine to address the multitude of challenges in cancer drug resistance. Looking through the "lens" of intrinsic, extrinsic, and drug-induced resistance (also referred to as "tolerance"), we will discuss three specific areas where active innovation is driving novel treatment paradigms: (1) nanotechnology, which has revolutionized drug delivery in desmoplastic tissues, harnessing physiochemical characteristics to destroy tumors through photothermal therapy and rationally designed nanostructures to circumvent cancer immunotherapy failures, (2) bioengineered tumor models, which have benefitted from microfluidics and mechanical engineering, creating a paradigm shift in physiologically relevant environments to predict clinical refractoriness and enabling platforms for screening drug combinations to thwart resistance at the individual patient level, and (3) computational and mathematical modeling, which blends in silico simulations with molecular and evolutionary principles to map mutational patterns and model interactions between cells that promote resistance. On the basis that engineering in medicine has resulted in discoveries in resistance biology and successfully translated to clinical strategies that improve outcomes, we suggest the proliferation of multidisciplinary science that embraces engineering.
引用
收藏
页码:3352 / 3389
页数:38
相关论文
共 332 条
[1]   Liposome: classification, preparation, and applications [J].
Akbarzadeh, Abolfazl ;
Rezaei-Sadabady, Rogaie ;
Davaran, Soodabeh ;
Joo, Sang Woo ;
Zarghami, Nosratollah ;
Hanifehpour, Younes ;
Samiei, Mohammad ;
Kouhi, Mohammad ;
Nejati-Koshki, Kazem .
NANOSCALE RESEARCH LETTERS, 2013, 8
[2]   Targeting heat shock protein 70 using gold nanorods enhances cancer cell apoptosis in low dose plasmonic photothermal therapy [J].
Ali, Moustafa R. K. ;
Ali, Hala R. ;
Rankin, Carl R. ;
El-Sayed, Mostafa A. .
BIOMATERIALS, 2016, 102 :1-8
[3]   Cellular Heterogeneity and Molecular Evolution in Cancer [J].
Almendro, Vanessa ;
Marusyk, Andriy ;
Polyak, Kornelia .
ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 8, 2013, 8 :277-302
[4]   The mathematics of cancer: integrating quantitative models [J].
Altrock, Philipp M. ;
Liu, Lin L. ;
Michor, Franziska .
NATURE REVIEWS CANCER, 2015, 15 (12) :730-745
[5]   Interplay of Darwinian Selection, Lamarckian Induction and Microvesicle Transfer on Drug Resistance in Cancer [J].
Alvarez-Arenas, Arturo ;
Podolski-Renic, Ana ;
Belmonte-Beitia, Juan ;
Pesic, Milica ;
Calvo, Gabriel F. .
SCIENTIFIC REPORTS, 2019, 9 (1)
[6]   Integrative mathematical oncology [J].
Anderson, Alexander R. A. ;
Quaranta, Vito .
NATURE REVIEWS CANCER, 2008, 8 (03) :227-234
[7]   Mathematical Oncology [J].
Anderson, Alexander R. A. ;
Maini, Philip K. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2018, 80 (05) :945-953
[8]   Talimogene Laherparepvec Improves Durable Response Rate in Patients With Advanced Melanoma [J].
Andtbacka, Robert H. I. ;
Kaufman, Howard L. ;
Collichio, Frances ;
Amatruda, Thomas ;
Senzer, Neil ;
Chesney, Jason ;
Delman, Keith A. ;
Spitler, Lynn E. ;
Puzanov, Igor ;
Agarwala, Sanjiv S. ;
Milhem, Mohammed ;
Cranmer, Lee ;
Curti, Brendan ;
Lewis, Karl ;
Ross, Merrick ;
Guthrie, Troy ;
Linette, Gerald P. ;
Daniels, Gregory A. ;
Harrington, Kevin ;
Middleton, Mark R. ;
Miller, Wilson H., Jr. ;
Zager, Jonathan S. ;
Ye, Yining ;
Yao, Bin ;
Li, Ai ;
Doleman, Susan ;
VanderWalde, Ari ;
Gansert, Jennifer ;
Coffin, Robert S. .
JOURNAL OF CLINICAL ONCOLOGY, 2015, 33 (25) :2780-U98
[9]   Immunosuppressive tumor-infiltrating myeloid cells mediate adaptive immune resistance via a PD-1/PD-L1 mechanism in glioblastoma [J].
Antonios, Joseph P. ;
Soto, Horacio ;
Everson, Richard G. ;
Moughon, Diana ;
Orpilla, Joey R. ;
Shin, Namjo P. ;
Sedighim, Shaina ;
Treger, Janet ;
Odesa, Sylvia ;
Tucker, Alexander ;
Yong, William H. ;
Li, Gang ;
Cloughesy, Timothy F. ;
Liau, Linda M. ;
Prins, Robert M. .
NEURO-ONCOLOGY, 2017, 19 (06) :796-807
[10]   3D microfluidic ex vivo culture of organotypic tumor spheroids to model immune checkpoint blockade [J].
Aref, Amir R. ;
Campisi, Marco ;
Ivanova, Elena ;
Portell, Andrew ;
Larios, Dalia ;
Piel, Brandon P. ;
Mathur, Natasha ;
Zhou, Chensheng ;
Coakley, Raven Vlahos ;
Bartels, Alan ;
Bowden, Michaela ;
Herbert, Zach ;
Hill, Sarah ;
Gilhooley, Sean ;
Carter, Jacob ;
Canadas, Israel ;
Thai, Tran C. ;
Kitajima, Shunsuke ;
Chiono, Valeria ;
Paweletz, Cloud P. ;
Barbie, David A. ;
Kamm, Roger D. ;
Jenkins, Russell W. .
LAB ON A CHIP, 2018, 18 (20) :3129-3143