Visualization and analysis of RNA-Seq assembly graphs

被引:5
作者
Nazarie, Fahmi W. [1 ,2 ]
Shih, Barbara [1 ,2 ]
Angus, Tim [1 ,2 ]
Barnett, Mark W. [1 ,2 ]
Chen, Sz-Hau [1 ,2 ]
Summers, Kim M. [2 ,3 ,4 ]
Klein, Karsten [5 ]
Faulkner, Geoffrey J. [4 ]
Saini, Harpreet K. [6 ]
Watson, Mick [2 ,3 ]
van Dongen, Stijn [7 ]
Enright, Anton J. [8 ]
Freeman, Tom C. [1 ,2 ]
机构
[1] Univ Edinburgh, Roslin Inst, Syst Immunol Grp, Edinburgh EH25 9RG, Midlothian, Scotland
[2] Univ Edinburgh, Royal Dick Sch Vet Studies, Edinburgh EH25 9RG, Midlothian, Scotland
[3] Univ Edinburgh, Roslin Inst, Genet & Genom, Edinburgh EH25 9RG, Midlothian, Scotland
[4] Univ Queensland, Translat Res Inst, Mater Res Inst, 37 Kent St, Woolloongabba, Qld 4102, Australia
[5] Konstanz Univ, Dept Comp Sci, Life Sci Informat Grp, D-78457 Constance, Germany
[6] Astex Pharmaceut, 436 Cambridge Sci Pk, Cambridge CB4 0QA, England
[7] Wellcome Sanger Inst, Cellular Genet Informat, Wellcome Genome Campus, Hinxton CB10 1SA, England
[8] Univ Cambridge, Dept Pathol, Tennis Court Rd, Cambridge CB2 1QP, England
基金
英国生物技术与生命科学研究理事会;
关键词
CELL-CYCLE; EXPRESSION; VIEWER; TOOLS; GENE;
D O I
10.1093/nar/gkz599
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity.
引用
收藏
页码:7262 / 7275
页数:14
相关论文
共 54 条
  • [1] Detecting differential usage of exons from RNA-seq data
    Anders, Simon
    Reyes, Alejandro
    Huber, Wolfgang
    [J]. GENOME RESEARCH, 2012, 22 (10) : 2008 - 2017
  • [2] Computational challenges, tools, and resources for analyzing co- and post-transcriptional events in high throughput
    Bahrami-Samani, Emad
    Vo, Dat T.
    de Araujo, Patricia Rosa
    Vogel, Christine
    Smith, Andrew D.
    Penalva, Luiz O. F.
    Uren, Philip J.
    [J]. WILEY INTERDISCIPLINARY REVIEWS-RNA, 2015, 6 (03) : 291 - 310
  • [3] Manananggal - a novel viewer for alternative splicing events
    Barann, Matthias
    Zimmer, Ralf
    Birzele, Fabian
    [J]. BMC BIOINFORMATICS, 2017, 18
  • [4] Complementarity of assembly-first and mapping-first approaches for alternative splicing annotation and differential analysis from RNAseq data
    Benoit-Pilven, Clara
    Marchet, Camille
    Chautard, Emilie
    Lima, Leandro
    Lambert, Marie-Pierre
    Sacomoto, Gustavo
    Rey, Amandine
    Cologne, Audric
    Terrone, Sophie
    Dulaurier, Louis
    Claude, Jean-Baptiste
    Bourgeois, Cyril F.
    Auboeuf, Didier
    Lacroix, Vincent
    [J]. SCIENTIFIC REPORTS, 2018, 8
  • [5] BamView: visualizing and interpretation of next-generation sequencing read alignments
    Carver, Tim
    Harris, Simon R.
    Otto, Thomas D.
    Berriman, Matthew
    Parkhill, Julian
    McQuillan, Jacqueline A.
    [J]. BRIEFINGS IN BIOINFORMATICS, 2013, 14 (02) : 203 - 212
  • [6] Chimani Markus, 2013, Handbook on Graph Drawing and Visualization, P543
  • [7] A survey of best practices for RNA-seq data analysis
    Conesa, Ana
    Madrigal, Pedro
    Tarazona, Sonia
    Gomez-Cabrero, David
    Cervera, Alejandra
    McPherson, Andrew
    Szczesniak, Michal Wojciech
    Gaffney, Daniel J.
    Elo, Laura L.
    Zhang, Xuegong
    Mortazavi, Ali
    [J]. GENOME BIOLOGY, 2016, 17
  • [8] RNA-Seq differential expression analysis: An extended review and a software tool
    Costa-Silva, Juliana
    Domingues, Douglas
    Lopes, Fabricio Martins
    [J]. PLOS ONE, 2017, 12 (12):
  • [9] Kraken: A set of tools for quality control and analysis Of high-throughput sequence data
    Davis, Matthew P. A.
    van Dongen, Stijn
    Abreu-Goodger, Cei
    Bartonicek, Nenad
    Enright, Anton J.
    [J]. METHODS, 2013, 63 (01) : 41 - 49
  • [10] Comparison of Alternative Splicing Junction Detection Tools Using RNA-Seq Data
    Ding, Lizhong
    Rath, Ethan
    Bai, Yongsheng
    [J]. CURRENT GENOMICS, 2017, 18 (03) : 268 - 277