Visualization and analysis of RNA-Seq assembly graphs

被引:5
|
作者
Nazarie, Fahmi W. [1 ,2 ]
Shih, Barbara [1 ,2 ]
Angus, Tim [1 ,2 ]
Barnett, Mark W. [1 ,2 ]
Chen, Sz-Hau [1 ,2 ]
Summers, Kim M. [2 ,3 ,4 ]
Klein, Karsten [5 ]
Faulkner, Geoffrey J. [4 ]
Saini, Harpreet K. [6 ]
Watson, Mick [2 ,3 ]
van Dongen, Stijn [7 ]
Enright, Anton J. [8 ]
Freeman, Tom C. [1 ,2 ]
机构
[1] Univ Edinburgh, Roslin Inst, Syst Immunol Grp, Edinburgh EH25 9RG, Midlothian, Scotland
[2] Univ Edinburgh, Royal Dick Sch Vet Studies, Edinburgh EH25 9RG, Midlothian, Scotland
[3] Univ Edinburgh, Roslin Inst, Genet & Genom, Edinburgh EH25 9RG, Midlothian, Scotland
[4] Univ Queensland, Translat Res Inst, Mater Res Inst, 37 Kent St, Woolloongabba, Qld 4102, Australia
[5] Konstanz Univ, Dept Comp Sci, Life Sci Informat Grp, D-78457 Constance, Germany
[6] Astex Pharmaceut, 436 Cambridge Sci Pk, Cambridge CB4 0QA, England
[7] Wellcome Sanger Inst, Cellular Genet Informat, Wellcome Genome Campus, Hinxton CB10 1SA, England
[8] Univ Cambridge, Dept Pathol, Tennis Court Rd, Cambridge CB2 1QP, England
基金
英国生物技术与生命科学研究理事会;
关键词
CELL-CYCLE; EXPRESSION; VIEWER; TOOLS; GENE;
D O I
10.1093/nar/gkz599
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
RNA-Seq is a powerful transcriptome profiling technology enabling transcript discovery and quantification. Whilst most commonly used for gene-level quantification, the data can be used for the analysis of transcript isoforms. However, when the underlying transcript assemblies are complex, current visualization approaches can be limiting, with splicing events a challenge to interpret. Here, we report on the development of a graph-based visualization method as a complementary approach to understanding transcript diversity from short-read RNA-Seq data. Following the mapping of reads to a reference genome, a read-to-read comparison is performed on all reads mapping to a given gene, producing a weighted similarity matrix between reads. This is used to produce an RNA assembly graph, where nodes represent reads and edges similarity scores between them. The resulting graphs are visualized in 3D space to better appreciate their sometimes large and complex topology, with other information being overlaid on to nodes, e.g. transcript models. Here we demonstrate the utility of this approach, including the unusual structure of these graphs and how they can be used to identify issues in assembly, repetitive sequences within transcripts and splice variants. We believe this approach has the potential to significantly improve our understanding of transcript complexity.
引用
收藏
页码:7262 / 7275
页数:14
相关论文
共 50 条
  • [1] VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis
    MacIntosh Cornwell
    Mahesh Vangala
    Len Taing
    Zachary Herbert
    Johannes Köster
    Bo Li
    Hanfei Sun
    Taiwen Li
    Jian Zhang
    Xintao Qiu
    Matthew Pun
    Rinath Jeselsohn
    Myles Brown
    X. Shirley Liu
    Henry W. Long
    BMC Bioinformatics, 19
  • [2] VIPER: Visualization Pipeline for RNA-seq, a Snakemake workflow for efficient and complete RNA-seq analysis
    Cornwell, MacIntosh
    Vangala, Mahesh
    Taing, Len
    Herbert, Zachary
    Koester, Johannes
    Li, Bo
    Sun, Hanfei
    Li, Taiwen
    Zhang, Jian
    Qiu, Xintao
    Pun, Matthew
    Jeselsohn, Rinath
    Brown, Myles
    Liu, X. Shirley
    Long, Henry W.
    BMC BIOINFORMATICS, 2018, 19
  • [3] De novo assembly and analysis of RNA-seq data
    Robertson, Gordon
    Schein, Jacqueline
    Chiu, Readman
    Corbett, Richard
    Field, Matthew
    Jackman, Shaun D.
    Mungall, Karen
    Lee, Sam
    Okada, Hisanaga Mark
    Qian, Jenny Q.
    Griffith, Malachi
    Raymond, Anthony
    Thiessen, Nina
    Cezard, Timothee
    Butterfield, Yaron S.
    Newsome, Richard
    Chan, Simon K.
    She, Rong
    Varhol, Richard
    Kamoh, Baljit
    Prabhu, Anna-Liisa
    Tam, Angela
    Zhao, YongJun
    Moore, Richard A.
    Hirst, Martin
    Marra, Marco A.
    Jones, Steven J. M.
    Hoodless, Pamela A.
    Birol, Inanc
    NATURE METHODS, 2010, 7 (11) : 909 - U62
  • [4] De novo assembly and analysis of RNA-seq data
    Gordon Robertson
    Jacqueline Schein
    Readman Chiu
    Richard Corbett
    Matthew Field
    Shaun D Jackman
    Karen Mungall
    Sam Lee
    Hisanaga Mark Okada
    Jenny Q Qian
    Malachi Griffith
    Anthony Raymond
    Nina Thiessen
    Timothee Cezard
    Yaron S Butterfield
    Richard Newsome
    Simon K Chan
    Rong She
    Richard Varhol
    Baljit Kamoh
    Anna-Liisa Prabhu
    Angela Tam
    YongJun Zhao
    Richard A Moore
    Martin Hirst
    Marco A Marra
    Steven J M Jones
    Pamela A Hoodless
    Inanc Birol
    Nature Methods, 2010, 7 : 909 - 912
  • [5] Interactive Analysis, Exploration, and Visualization of RNA-Seq Data with SeqCVIBE
    Bothos, Efthimios
    Hatzis, Pantelis
    Moulos, Panagiotis
    METHODS AND PROTOCOLS, 2022, 5 (02)
  • [6] expVIP: a Customizable RNA-seq Data Analysis and Visualization Platform
    Borrill, Philippa
    Ramirez-Gonzalez, Ricardo
    Uauy, Cristobal
    PLANT PHYSIOLOGY, 2016, 170 (04) : 2172 - 2186
  • [7] RNA-seq assembly - are we there yet?
    Schliesky, Simon
    Gowik, Udo
    Weber, Andreas P. M.
    Braeutigam, Andrea
    FRONTIERS IN PLANT SCIENCE, 2012, 3
  • [8] RNA-Seq UD: A bioinformatics plattform for RNA-Seq analysis
    Ramirez, Miguel
    Alejandro Rojas-Quintero, Cristian
    Enrique Vera-Parra, Nelson
    2015 10TH IBERIAN CONFERENCE ON INFORMATION SYSTEMS AND TECHNOLOGIES (CISTI), 2015,
  • [9] RNAseqViewer: visualization tool for RNA-Seq data
    Roge, Xavier
    Zhang, Xuegong
    BIOINFORMATICS, 2014, 30 (06) : 891 - 892
  • [10] RNA-Seq analysis and de novo transcriptome assembly of Hevea brasiliensis
    Xia, Zhihui
    Xu, Huimin
    Zhai, Jinling
    Li, Dejun
    Luo, Hongli
    He, Chaozu
    Huang, Xi
    PLANT MOLECULAR BIOLOGY, 2011, 77 (03) : 299 - 308