QcrB in Mycobacterium tuberculosis: The new drug target of antitubercular agents

被引:27
作者
Bahuguna, Aparna [1 ]
Rawat, Srishti [1 ]
Rawat, Diwan S. [1 ]
机构
[1] Univ Delhi, Dept Chem, Delhi 110007, India
关键词
cellular respiration; cytochrome bcc; Mycobacterium tuberculosis; oxidative phosphorylation; QcrB; RESPIRATORY SUPERCOMPLEX; BIOLOGICAL EVALUATION; CLINICAL CANDIDATE; LEAD OPTIMIZATION; ATP HOMEOSTASIS; DESIGN; IDENTIFICATION; INHIBITORS; DISCOVERY; 2-(QUINOLIN-4-YLOXY)ACETAMIDES;
D O I
10.1002/med.21779
中图分类号
R914 [药物化学];
学科分类号
100701 ;
摘要
Drug-resistance in mycobacterial infections is a major global health problem that leads to high mortality and socioeconomic pressure in developing countries around the world. From finding new targets to discovering novel chemical scaffolds, there is an urgent need for the development of better approaches for the cure of tuberculosis. Recently, energy metabolism in mycobacteria, particularly the oxidative phosphorylation pathway of cellular respiration, has emerged as a novel target pathway in drug discovery. New classes of antibacterials which target oxidative phosphorylation pathway either by interacting with a protein or any step in the pathway of oxidative phosphorylation can combat dormant mycobacterial infections leading to shortening of tuberculosis chemotherapy. Adenosine triphosphate synthase is one such recently discovered target of the newly approved antitubercular drug bedaquiline. Cytochrome bcc is another new target of the antitubercular drug candidate Q203, currently in phase II clinical trial. Research suggests that b subunit of cytochrome bcc, QcrB, is the target of Q203. The review article describes the structure, function, and importance of targeting QcrB throwing light on all chemical classes of QcrB inhibitors discovered to date. An understanding of the structure and function of validated targets and their inhibitors would enable the development of new chemical entities.
引用
收藏
页码:2565 / 2581
页数:17
相关论文
共 84 条
[1]   Identification of Novel Imidazo[1,2-a]pyridine Inhibitors Targeting M. tuberculosis QcrB [J].
Abrahams, Katherine A. ;
Cox, Jonathan A. G. ;
Spivey, Vickey L. ;
Loman, Nicholas J. ;
Pallen, Mark J. ;
Constantinidou, Chrystala ;
Fernandez, Raquel ;
Alemparte, Carlos ;
Remuinan, Modesto J. ;
Barros, David ;
Ballell, Lluis ;
Besra, Gurdyal S. .
PLOS ONE, 2012, 7 (12)
[2]   High-throughput screening for inhibitors of Mycobacterium tuberculosis H37Rv [J].
Ananthan, Subramaniam ;
Faaleolea, Ellen R. ;
Goldman, Robert C. ;
Hobrath, Judith V. ;
Kwong, Cecil D. ;
Laughon, Barbara E. ;
Maddry, Joseph A. ;
Mehta, Alka ;
Rasmussen, Lynn ;
Reynolds, Robert C. ;
Secrist, John A., III ;
Shindo, Nice ;
Showe, Dustin N. ;
Sosa, Melinda I. ;
Suling, William J. ;
White, E. Lucile .
TUBERCULOSIS, 2009, 89 (05) :334-353
[3]   NSC 18725, a Pyrazole Derivative Inhibits Growth of Intracellular Mycobacterium tuberculosis by Induction of Autophagy [J].
Arora, Garima ;
Gagandeep ;
Behura, Assirbad ;
Gosain, Tannu Priya ;
Shaliwal, Ravi P. ;
Kidwai, Saqib ;
Singh, Padam ;
Kandi, Shamseer Kulangara ;
Dhiman, Rohan ;
Rawat, Diwan S. ;
Singh, Ramandeep .
FRONTIERS IN MICROBIOLOGY, 2020, 10
[4]   Respiratory Flexibility in Response to Inhibition of Cytochrome c Oxidase in Mycobacterium tuberculosis [J].
Arora, Kriti ;
Ochoa-Montano, Bernardo ;
Tsang, Patricia S. ;
Blundell, Tom L. ;
Dawes, Stephanie S. ;
Mizrahi, Valerie ;
Bayliss, Tracy ;
Mackenzie, Claire J. ;
Cleghorn, Laura A. T. ;
Ray, Peter C. ;
Wyatt, Paul G. ;
Uh, Eugene ;
Lee, Jinwoo ;
Barry, Clifton E., III ;
Boshoff, Helena I. .
ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, 2014, 58 (11) :6962-6965
[5]   An overview of new antitubercular drugs, drug candidates, and their targets [J].
Bahuguna, Aparna ;
Rawat, Diwan S. .
MEDICINAL RESEARCH REVIEWS, 2020, 40 (01) :263-292
[6]   Targeting Energy Metabolism in Mycobacterium tuberculosis, a New Paradigm in Antimycobacterial Drug Discovery [J].
Bald, Dirk ;
Villellas, Cristina ;
Lu, Ping ;
Koul, Anil .
MBIO, 2017, 8 (02)
[7]   Respiratory ATP synthesis: the new generation of mycobacterial drug targets? [J].
Bald, Dirk ;
Koul, Anil .
FEMS MICROBIOLOGY LETTERS, 2010, 308 (01) :1-7
[8]   Fueling Open-Source Drug Discovery: 177 Small-Molecule Leads against Tuberculosis [J].
Ballell, Lluis ;
Bates, Robert H. ;
Young, Rob J. ;
Alvarez-Gomez, Daniel ;
Alvarez-Ruiz, Emilio ;
Barroso, Vanessa ;
Blanco, Delia ;
Crespo, Benigno ;
Escribano, Jaime ;
Gonzalez, Ruben ;
Lozano, Sonia ;
Huss, Sophie ;
Santos-Villarejo, Angel ;
Julio Martin-Plaza, Jose ;
Mendoza, Alfonso ;
Jose Rebollo-Lopez, Maria ;
Remuinan-Blanco, Modesto ;
Luis Lavandera, Jose ;
Perez-Herran, Esther ;
Javier Gamo-Benito, Francisco ;
Francisco Garcia-Bustos, Jose ;
Barros, David ;
Castro, Julia P. ;
Cammack, Nicholas .
CHEMMEDCHEM, 2013, 8 (02) :313-321
[9]   Antituberculosis Drug Research: A Critical Overview [J].
Beena ;
Rawat, Diwan S. .
MEDICINAL RESEARCH REVIEWS, 2013, 33 (04) :693-764
[10]   Unique Flexibility in Energy Metabolism Allows Mycobacteria to Combat Starvation and Hypoxia [J].
Berney, Michael ;
Cook, Gregory M. .
PLOS ONE, 2010, 5 (01)