Hierarchical Multi-Label Classification of Library Subject Headings

被引:1
|
作者
Wandee, Worrawan [1 ]
Songmuang, Pokpong [1 ]
机构
[1] Thammasat Univ, Fac Sci & Technol, Dept Comp Sci, Bangkok, Thailand
来源
INTERNATIONAL CONFERENCE ON CYBERNETICS AND INNOVATIONS (ICCI 2022) | 2022年
关键词
Hierarchical Multi-Label Classification; Multilabel classification (MLC); Text classification; Subject headings; Library Subject Headings;
D O I
10.1109/ICCI54995.2022.9744189
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
Assigning the subject heading is a significant work of the librarian. Subject heading represents the overall contents of the books which is a great way to easily find the books related directly to the user's needs. But a book can be related to more than one subject and Some librarians are not experts in every discipline. They take more time on this process. In this paper, our research has a small dataset, so the multi-label classification technique is unsuitable for this work. Therefore, we propose the hierarchical multi-label classification to help them assign subject heading to the book from a title and a table of contents. We also compare the performance of three techniques: Support Vector Machine (SVM), Random Forest (RF), and K-Nearest Neighbors (KNN), to select the best classification technique. According to the results, Random Forest technique is the best one for the first hierarchy classifiers with the highest F1 of 0.908. The second hierarchy classifiers that uses Random Forest technique attains the F1 score of 0.871.
引用
收藏
页数:5
相关论文
共 50 条
  • [1] ReliefF for Hierarchical Multi-label Classification
    Slavkov, Ivica
    Karcheska, Jana
    Kocev, Dragi
    Kalajdziski, Slobodan
    Dzeroski, Saso
    NEW FRONTIERS IN MINING COMPLEX PATTERNS, NFMCP 2013, 2014, 8399 : 148 - 161
  • [2] Hierarchical Multi-Label Classification Networks
    Wehrmann, Jonatas
    Cerri, Ricardo
    Barros, Rodrigo C.
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 80, 2018, 80
  • [3] The importance of the label hierarchy in hierarchical multi-label classification
    Levatic, Jurica
    Kocev, Dragi
    Dzeroski, Saso
    JOURNAL OF INTELLIGENT INFORMATION SYSTEMS, 2015, 45 (02) : 247 - 271
  • [4] The importance of the label hierarchy in hierarchical multi-label classification
    Jurica Levatić
    Dragi Kocev
    Sašo Džeroski
    Journal of Intelligent Information Systems, 2015, 45 : 247 - 271
  • [5] Label Correction Strategy on Hierarchical Multi-Label Classification
    Ananpiriyakul, Thanawut
    Poomsirivilai, Piyapan
    Vateekul, Peerapon
    MACHINE LEARNING AND DATA MINING IN PATTERN RECOGNITION, MLDM 2014, 2014, 8556 : 213 - 227
  • [6] Feature Selection for Hierarchical Multi-label Classification
    da Silva, Luan V. M.
    Cerri, Ricardo
    ADVANCES IN INTELLIGENT DATA ANALYSIS XIX, IDA 2021, 2021, 12695 : 196 - 208
  • [7] Active learning for hierarchical multi-label classification
    Nakano, Felipe Kenji
    Cerri, Ricardo
    Vens, Celine
    DATA MINING AND KNOWLEDGE DISCOVERY, 2020, 34 (05) : 1496 - 1530
  • [8] Evaluating Extreme Hierarchical Multi-label Classification
    Amigo, Enrique
    Delgado, Agustin D.
    PROCEEDINGS OF THE 60TH ANNUAL MEETING OF THE ASSOCIATION FOR COMPUTATIONAL LINGUISTICS (ACL 2022), VOL 1: (LONG PAPERS), 2022, : 5809 - 5819
  • [9] Decision trees for hierarchical multi-label classification
    Celine Vens
    Jan Struyf
    Leander Schietgat
    Sašo Džeroski
    Hendrik Blockeel
    Machine Learning, 2008, 73 : 185 - 214
  • [10] Effects of the hierarchy in hierarchical, multi-label classification
    Daisey, Katie
    Brown, Steven D.
    CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2020, 207