Anisotropic Diffusion of a Charged Tritium Interstitial in Li2TiO3 from First-Principles Calculations

被引:17
作者
Shi, Yanli [1 ,2 ]
Qi, Jianqi [1 ,3 ]
Han, Yong [4 ,5 ]
Lu, Tiecheng [1 ,2 ]
机构
[1] Sichuan Univ, Coll Phys Sci & Technol, Chengdu 610064, Sichuan, Peoples R China
[2] Sichuan Univ, Minist Educ, Key Lab Radiat Phys & Technol, Chengdu 610064, Sichuan, Peoples R China
[3] Sichuan Univ, Minist Educ, Key Lab High Energy Dens Phys, Chengdu 610064, Sichuan, Peoples R China
[4] Iowa State Univ, Ames Lab, US DOE, Ames, IA 50011 USA
[5] Iowa State Univ, Dept Phys & Astron, Ames, IA 50011 USA
来源
PHYSICAL REVIEW APPLIED | 2018年 / 10卷 / 02期
基金
美国国家科学基金会;
关键词
CERAMIC BREEDER MATERIALS; MINIMUM ENERGY PATHS; ELASTIC BAND METHOD; RELEASE BEHAVIOR; OCCUPATION SITES; LITHIUM TITANATE; SADDLE-POINTS; KINETICS; DYNAMICS; CRYSTAL;
D O I
10.1103/PhysRevApplied.10.024021
中图分类号
O59 [应用物理学];
学科分类号
摘要
Tritium diffusion in the nuclear fusion reactor breeder material Li2TiO3 is a fundamentally important process for tritium-release kinetics. The energy barrier of tritium diffusion in Li2TiO3 has been reported with a considerable uncertainty in previous experiments. Here, we perform systematic density-functionaltheory (DFT) studies for the diffusion processes of positively charged tritium, which is the preferential charge state of the tritium interstitial in a single Li2TiO3 crystal. By calculating various local-diffusion minimum-energy paths, we find that the diffusion of tritium is strongly anisotropic along different crystalline directions. The most favorable diffusion paths appear within a Li-6 atomic single layer of Li2TiO3 and the corresponding DFT diffusion barrier is 0.334 eV, while the diffusion barrier for the most favorable diffusion paths crossing a Li2Ti4 atomic layer is 1.006 eV.
引用
收藏
页数:11
相关论文
共 42 条
[1]  
Kikuchi M., Lackner K., Tran M.Q., Fusion Physics, (2012)
[2]  
Johnson C.E., Noda K., Roux N., Ceramic breeder materials: Status and needs, J. Nucl. Mater., 258-263, (1998)
[3]  
Ying A., Akiba M., Boccaccini L.V., Casadio S., Dell'Orco G., Enoeda M., Hayashi K., Hegeman J.B., Knitter R., Van Der Laan J., Lulewicz J.D., Wen Z.Y., Status and perspective of the R&D on ceramic breeder materials for testing in ITER, J. Nucl. Mater., 367-370, (2007)
[4]  
Duan Y., Parlinski K., Density functional theory study of the structural, electronic, lattice dynamical, and thermodynamic properties of (Equation presented) and its capability for (Equation presented) capture, Phys. Rev. B, 84, (2011)
[5]  
Garin P., Diegele E., Heidinger R., Ibarra A., Jitsukawa S., Kimura H., Moslang A., Muroga T., Nishitani T., Poitevin Y., Sugimoto M., Zmitko M., IFMIF specifications from the users point of view, Fusion Eng. Des., 86, (2011)
[6]  
Knitter R., Chaudhuri P., Feng Y.J., Hoshino T., Yu I.K., Recent developments of solid breeder fabrication, J. Nucl. Mater., 442, (2013)
[7]  
Konishi S., Enoeda M., Nakamichi M., Hoshino T., Ying A., Sharafat S., Smolentsev S., Functional materials for breeding blankets-status and developments, Nucl. Fusion, 57, (2017)
[8]  
Johnson C.E., Tritium behavior in lithium ceramics, J. Nucl. Mater., 270, (1999)
[9]  
Bertone P., The kinetics that govern the release of tritium from neutron-irradiated lithium oxide, J. Nucl. Mater., 151, (1988)
[10]  
Zhu D., Oda T., Shono Y., Tanaka S., Release behavior of hydrogen isotopes thermally sorbed in (Equation presented) single crystal, J. Nucl. Mater., 442, (2013)