High Speed Mid-Wave Infrared Uni-Traveling Carrier Photodetector

被引:26
作者
Huang, Jian [1 ,2 ,3 ]
Xie, Zhiyang [1 ]
Chen, Yaojiang [1 ]
Bowers, John E. [4 ]
Chen, Baile [1 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Inst Microsyst & Informat Technol, Shanghai 200050, Peoples R China
[3] Univ Chinese Acad Sci, Beijing 100049, Peoples R China
[4] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
中国国家自然科学基金;
关键词
Uni-traveling carrier photodetectors; high speed photodetectors; mid-wavelength infrared photodetectors; InAs/GaSb type II superlattices;
D O I
10.1109/JQE.2020.3003038
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A mid-wave infrared (MWIR) frequency comb is expected to dramatically improve the precision and sensitivity of molecular spectroscopy. For high resolution applications, a high speed MWIR photodetector is one of the key components, however, commercially available high speed MWIR photodetectors only have sub-GHz bandwidth currently. In this paper, we demonstrate, for the first time to our knowledge, a high speed mid-wave infrared (MWIR) uni-traveling carrier photodetector based on InAs/GaSb type-II superlattice (T2SL) at room temperature. The device exhibits a cutoff wavelength of 5.6 mu m and a 3dB bandwidth of 6.58 GHz for a 20 mu m diameter device at 300 K. These promising results show that the device has potential to be utilized in high speed applications such as frequency comb spectroscopy, free space communication and others. The limitations on the high frequency performance of the photodetectors are also discussed.
引用
收藏
页数:7
相关论文
共 29 条
[1]   Interleaved difference-frequency generation for microcomb spectral densification in the mid-infrared [J].
Bao, Chengying ;
Yuan, Zhiquan ;
Wang, Heming ;
Wu, Lue ;
Shen, Boqiang ;
Sung, Keeyoon ;
Leifer, Stephanie ;
Lin, Qiang ;
Vahala, Kerry .
OPTICA, 2020, 7 (04) :309-315
[2]   Mixing Properties of Room Temperature Patch-Antenna Receivers in a Mid-Infrared (λ ≈ 9 μm) Heterodyne System [J].
Bigioli, Azzurra ;
Gacemi, Djamal ;
Palaferri, Daniele ;
Todorov, Yanko ;
Vasanelli, Angela ;
Suffit, Stephan ;
Li, Lianhe ;
Davies, A. Giles ;
Linfield, Edmund H. ;
Kapsalidis, Filippos ;
Beck, Mattias ;
Faist, Jerome ;
Sirtori, Carlo .
LASER & PHOTONICS REVIEWS, 2020, 14 (02)
[3]   Active Region Design and Gain Characteristics of InP-Based Dilute Bismide Type-II Quantum Wells for Mid-IR Lasers [J].
Chen, Baile .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2017, 64 (04) :1606-1611
[4]   Design of strain compensated InGaAs/GaAsSb type-II quantum well structures for mid-infrared photodiodes [J].
Chen, Baile ;
Jiang, W. Y. ;
Holmes, A. L., Jr. .
OPTICAL AND QUANTUM ELECTRONICS, 2012, 44 (3-5) :103-109
[5]   High-Speed Mid-Infrared Interband Cascade Photodetector Based on InAs/GaAsSb Type-II Superlattice [J].
Chen, Yaojiang ;
Chai, Xuliang ;
Xie, Zhiyang ;
Deng, Zhuo ;
Zhang, Ningtao ;
Zhou, Yi ;
Xu, Zhicheng ;
Chen, Jianxin ;
Chen, Baile .
JOURNAL OF LIGHTWAVE TECHNOLOGY, 2020, 38 (04) :939-945
[6]   High-speed uni-traveling carrier photodiode for 2 μm wavelength application [J].
Chen, Yaojiang ;
Xie, Zhiyang ;
Huang, Jian ;
Deng, Zhuo ;
Chen, Baile .
OPTICA, 2019, 6 (07) :884-889
[7]   Resonant cavity enhanced photodiodes on GaSb for the mid-wave infrared [J].
Craig, A. P. ;
Al-Saymari, F. ;
Jain, M. ;
Bainbridge, A. ;
Savich, G. R. ;
Golding, T. ;
Krier, A. ;
Wicks, G. W. ;
Marshall, A. R. .
APPLIED PHYSICS LETTERS, 2019, 114 (15)
[8]   Mid-infrared optical frequency combs based on difference frequency generation for molecular spectroscopy [J].
Cruz, Flavio C. ;
Maser, Daniel L. ;
Johnson, Todd ;
Ycas, Gabriel ;
Klose, Andrew ;
Giorgetta, Fabrizio R. ;
Coddington, Ian ;
Diddams, Scott A. .
OPTICS EXPRESS, 2015, 23 (20) :26814-26824
[9]   High-speed quantum cascade detector with frequency response of over 20 GHz [J].
Dougakiuchi, Tatsuo ;
Edamura, Tadataka .
SPIE FUTURE SENSING TECHNOLOGIES, 2019, 11197
[10]  
Henniger H, 2010, RADIOENGINEERING, V19, P203