Development and application of phase diagrams for Li-ion batteries using CALPHAD approach

被引:19
作者
Li, Na [1 ]
Li, Dajian [2 ]
Zhang, Weibin [1 ]
Chang, Keke [3 ]
Dang, Feng [1 ]
Du, Yong [4 ]
Seifert, Hans J. [2 ]
机构
[1] Shandong Univ, Minist Educ, Key Lab Liquid Solid Struct Evolut & Proc Mat, Jinan 250061, Shandong, Peoples R China
[2] KIT, Inst Appl Mat Appl Mat Phys IAM AWP, Hermann von Helmholtz Pl 1, D-76344 Eggenstein Leopoldshafen, Germany
[3] Chinese Acad Sci, Ningbo Inst Mat Technol & Engn, Engn Lab Adv Energy Mat, 1219 Zhongguan West Rd, Ningbo 315201, Zhejiang, Peoples R China
[4] Cent South Univ, State Key Lab Powder Met, Changsha 410083, Hunan, Peoples R China
基金
中国国家自然科学基金;
关键词
Li-Ion battery; Phase diagram; CALPHAD; Thermodynamic property; Electrochemical behavior; THERMODYNAMIC DESCRIPTION; LITHIUM DEINTERCALATION; ELECTRONIC-PROPERTIES; METAL TRANSITION; SOLID-SOLUTIONS; ENERGY-STORAGE; SPINEL; LICOO2; SILICON; OXIDES;
D O I
10.1016/j.pnsc.2019.05.007
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Phase diagrams provide fundamental knowledge about design map of new electrode materials for Li-ion batteries. The CALPHAD (CALculation of PHAse Diagrams) approach is widely applied to the development of phase diagrams and property diagrams in a thermodynamic language. Within the CALPHAD framework, the theoretical modeling can be performed to predict phase equilibria, thermodynamics, electrochemical and physical properties of electrodes. This review provides the successful application of high quality calculated phase diagrams and thermodynamic property diagrams in CALPHAD investigation to both cathodes and anodes of Li-ion batteries, including Li-Co-O, Li-Ni-O, Li-Co-Ni-O, Li-Mn-O, Li-Cu-O, Li-Si, Li-Sb and Li-Sn systems with. The intensive CALPHAD-type research may also predict electrochemical properties, cell performance of the Li-ion batteries to achieve more efficient development of electrode materials.
引用
收藏
页码:265 / 276
页数:12
相关论文
共 67 条
  • [1] Synthesis, structure characterization and magnetic properties of nanosize LiCo1-yNiyO2 prepared by sol-gel citric acid route
    Abdel Ghany, A. E.
    Hashem, A. M. A.
    Abuzeid, H. A. M.
    Eid, A. E.
    Bayoumi, H. A.
    Julien, C. M.
    [J]. IONICS, 2009, 15 (01) : 49 - 59
  • [2] Thermodynamic modeling of the LiCoO2-CoO2 pseudo-binary system
    Abe, Taichi
    Koyama, Toshiyuki
    [J]. CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 2011, 35 (02): : 209 - 218
  • [3] [Anonymous], ELSEVIER MAT TODAY
  • [4] [Anonymous], CALPHAD 46 C SAINT M
  • [5] IN-SITU GROWTH OF LAYERED, SPINEL, AND ROCK-SALT LICOO2 BY LASER-ABLATION DEPOSITION
    ANTAYA, M
    CEARNS, K
    PRESTON, JS
    REIMERS, JN
    DAHN, JR
    [J]. JOURNAL OF APPLIED PHYSICS, 1994, 76 (05) : 2799 - 2806
  • [6] CHARACTERIZATION AND CATHODE PERFORMANCE OF LI-1-XNI1+XO2 PREPARED WITH THE EXCESS LITHIUM METHOD
    ARAI, H
    OKADA, S
    OHTSUKA, H
    ICHIMURA, M
    YAMAKI, J
    [J]. SOLID STATE IONICS, 1995, 80 (3-4) : 261 - 269
  • [7] High-throughput computational design of cathode coatings for Li-ion batteries
    Aykol, Muratahan
    Kim, Soo
    Hegde, Vinay I.
    Snydacker, David
    Lu, Zhi
    Hao, Shiqiang
    Kirklin, Scott
    Morgan, Dane
    Wolverton, C.
    [J]. NATURE COMMUNICATIONS, 2016, 7
  • [8] COBALT STABILIZED LAYERED LITHIUM-NICKEL OXIDES, CATHODES IN LITHIUM RECHARGEABLE CELLS
    BANOV, B
    BOURILKOV, J
    MLADENOV, M
    [J]. JOURNAL OF POWER SOURCES, 1995, 54 (02) : 268 - 270
  • [9] The Li-Sb phase diagram part I: New experimental results
    Beutl, A.
    Cupid, D.
    Flandorfer, H.
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 695 : 1052 - 1060
  • [10] Li-Si phase diagram: Enthalpy of mixing, thermodynamic stability, and coherent assessment
    Braga, M. Helena
    Debski, Adam
    Gasior, Wladyslaw
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 616 : 581 - 593