A role for glutathione peroxidase in protecting pancreatic β cells against oxidative stress in a model of glucose toxicity

被引:256
作者
Tanaka, Y
Tran, POT
Harmon, J
Robertson, RP
机构
[1] Univ Washington, Pacific NW Res Inst, Seattle, WA 98122 USA
[2] Univ Washington, Dept Med, Seattle, WA 98122 USA
[3] Univ Washington, Dept Pharmacol, Seattle, WA 98122 USA
关键词
D O I
10.1073/pnas.192445199
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Antioxidant drugs have been reported to protect pancreatic islets from the adverse effects of chronic exposure to supraphysiological glucose concentrations. However, glucose has not been shown to increase intracellular oxidant load in islets, nor have the effects of increasing or inhibiting glutathione peroxidase (GPx) activity on islet resistance to sugar-induced oxidant stress been studied. We observed that high glucose concentrations increased intracellular peroxide levels in human islets and the pancreatic beta cell line, HIT-T15. inhibition of gamma-glutamylcysteine synthetase (gammaGCS) by buthionine sulfoximine augmented the increase in islet peroxide and decrease in insulin mRNA levels, content, and secretion in islets and HIT-T15 cells induced by ribose. Adenoviral overexpression of GPx increased GPx activity and protected islets against adverse effects of ribose. These results demonstrate that glucose and ribose increase islet peroxide accumulation and that the adverse consequences of ribose-induced oxidative stress on insulin mRNA, content, and secretion can be augmented by a glutathione synthesis inhibitor and prevented by increasing islet GPx activity. These observations support the hypothesis that oxidative stress is one mechanism for glucose toxicity in pancreatic islets.
引用
收藏
页码:12363 / 12368
页数:6
相关论文
共 42 条
[1]   IMPAIRED ACTIVATION OF GLUCOSE-OXIDATION AND NADPH SUPPLY IN HUMAN ENDOTHELIAL-CELLS EXPOSED TO H2O2 IN HIGH-GLUCOSE MEDIUM [J].
ASAHINA, T ;
KASHIWAGI, A ;
NISHIO, Y ;
IKEBUCHI, M ;
HARADA, N ;
TANAKA, Y ;
TAKAGI, Y ;
SAEKI, Y ;
KIKKAWA, R ;
SHIGETA, Y .
DIABETES, 1995, 44 (05) :520-526
[2]   ROLE OF OXIDATIVE STRESS IN DEVELOPMENT OF COMPLICATIONS IN DIABETES [J].
BAYNES, JW .
DIABETES, 1991, 40 (04) :405-412
[3]   Adenovirus-mediated catalase gene transfer reduces oxidant stress in human, porcine and rat pancreatic islets [J].
Benhamou, PY ;
Moriscot, C ;
Richard, MJ ;
Beatrix, O ;
Badet, L ;
Pattou, F ;
Kerr-Conte, J ;
Chroboczek, J ;
Lemarchand, P ;
Halimi, S .
DIABETOLOGIA, 1998, 41 (09) :1093-1100
[4]   Glucose-induced oxidative stress in mesangial cells [J].
Catherwood, MA ;
Powell, LA ;
Anderson, P ;
McMaster, D ;
Sharpe, PC ;
Trimble, ER .
KIDNEY INTERNATIONAL, 2002, 61 (02) :599-608
[5]   High glucose induces antioxidant enzymes in human endothelial cells in culture - Evidence linking hyperglycemia and oxidative stress [J].
Ceriello, A ;
delloRusso, P ;
Amstad, P ;
Cerutti, P .
DIABETES, 1996, 45 (04) :471-477
[6]   SINGLE-STEP METHOD OF RNA ISOLATION BY ACID GUANIDINIUM THIOCYANATE PHENOL CHLOROFORM EXTRACTION [J].
CHOMCZYNSKI, P ;
SACCHI, N .
ANALYTICAL BIOCHEMISTRY, 1987, 162 (01) :156-159
[7]   High glucose-altered gene expression in mesangial cells - Actin-regulatory protein gene expression is triggered by oxidative stress and cytoskeletal disassembly [J].
Clarkson, MR ;
Murphy, M ;
Gupta, S ;
Lambe, T ;
Mackenzie, HS ;
Godson, C ;
Martin, F ;
Brady, HR .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (12) :9707-9712
[8]   Hyperglycemia-induced mitochondrial superoxide overproduction activates the hexosamine pathway and induces plasminogen activator inhibitor-1 expression by increasing Sp1 glycosylation [J].
Du, XL ;
Edelstein, D ;
Rossetti, L ;
Fantus, IG ;
Goldberg, H ;
Ziyadeh, F ;
Wu, J ;
Brownlee, M .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2000, 97 (22) :12222-12226
[9]   PROLONGED EXPOSURE OF HUMAN PANCREATIC-ISLETS TO HIGH GLUCOSE-CONCENTRATIONS INVITRO IMPAIRS THE BETA-CELL FUNCTION [J].
EIZIRIK, DL ;
KORBUTT, GS ;
HELLERSTROM, C .
JOURNAL OF CLINICAL INVESTIGATION, 1992, 90 (04) :1263-1268
[10]   Mechanisms of disease: Molecular mechanisms and clinical pathophysiology of maturity-onset diabetes of the young. [J].
Fajans, SS ;
Bell, GI ;
Polonsky, KS .
NEW ENGLAND JOURNAL OF MEDICINE, 2001, 345 (13) :971-980