Flex ddG: Rosetta Ensemble-Based Estimation of Changes in Protein-Protein Binding Affinity upon Mutation

被引:153
作者
Barlow, Kyle A. [1 ]
Conchuir, Shane O. [2 ,3 ]
Thompson, Samuel [4 ]
Suresh, Pooja [4 ]
Lucas, James E. [5 ]
Heinonen, Markus [6 ,7 ]
Kortemme, Tanja [1 ,2 ,3 ,4 ,5 ,8 ]
机构
[1] Univ Calif San Francisco, Grad Program Bioinformat, San Francisco, CA 94143 USA
[2] Univ Calif San Francisco, Calif Inst Quantitat Biosci, San Francisco, CA 94143 USA
[3] Univ Calif San Francisco, Dept Bioengn & Therapeut Sci, San Francisco, CA 94143 USA
[4] Univ Calif San Francisco, Grad Program Biophys, San Francisco, CA 94143 USA
[5] Univ Calif San Francisco, Grad Program Bioengn, San Francisco, CA 94143 USA
[6] Aalto Univ, Dept Comp Sci, Espoo, Finland
[7] HITT, Helsinki, Finland
[8] Chan Zuckerberg Biohub, San Francisco, CA 94158 USA
基金
芬兰科学院; 美国国家科学基金会;
关键词
ENERGY FUNCTION; CONFORMATIONAL VARIABILITY; STABILITY PREDICTIONS; BACKBONE ENSEMBLES; RATIONAL DESIGN; HOT-SPOTS; IMPROVES; COMPLEXES; MODEL; FLEXIBILITY;
D O I
10.1021/acs.jpcb.7b11367
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Computationally modeling changes in binding free energies upon mutation (interface Delta Delta G) allows large-scale prediction and perturbation of protein-protein interactions. Additionally, methods that consider and sample relevant conformational plasticity should be able to achieve higher prediction accuracy over methods that do not. To test this hypothesis, we developed a method within the Rosetta macromolecular modeling suite (flex ddG) that samples conformational diversity using "backrub" to generate an ensemble of models and then applies torsion minimization, side chain repacking, and averaging across this ensemble to estimate interface Delta Delta G values. We tested our method on a curated benchmark set of 1240 mutants, and found the method outperformed existing methods that sampled conformational space to a lesser degree. We observed considerable improvements with flex ddG over existing methods on the subset of small side chain to large side chain mutations, as well as for multiple simultaneous non-alanine mutations, stabilizing mutations, and mutations in antibody-antigen interfaces. Finally, we applied a generalized additive model (GAM) approach to the Rosetta energy function; the resulting nonlinear reweighting model improved the agreement with experimentally determined interface Delta Delta G values but also highlighted the necessity of future energy function improvements.
引用
收藏
页码:5389 / 5399
页数:11
相关论文
共 62 条
  • [31] Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair
    Kapp, Gregory T.
    Liu, Sen
    Stein, Amelie
    Wong, Derek T.
    Remenyi, Attila
    Yeh, Brian J.
    Fraser, James S.
    Taunton, Jack
    Lim, Wendell A.
    Kortemme, Tanja
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2012, 109 (14) : 5277 - 5282
  • [32] Practically Useful: What the ROSETTA Protein Modeling Suite Can Do for You
    Kaufmann, Kristian W.
    Lemmon, Gordon H.
    DeLuca, Samuel L.
    Sheehan, Jonathan H.
    Meiler, Jens
    [J]. BIOCHEMISTRY, 2010, 49 (14) : 2987 - 2998
  • [33] The Role of Local Backrub Motions in Evolved and Designed Mutations
    Keedy, Daniel A.
    Georgiev, Ivelin
    Triplett, Edward B.
    Donald, Bruce R.
    Richardson, David C.
    Richardson, Jane S.
    [J]. PLOS COMPUTATIONAL BIOLOGY, 2012, 8 (08)
  • [34] Role of conformational sampling in computing mutation-induced changes in protein structure and stability
    Kellogg, Elizabeth H.
    Leaver-Fay, Andrew
    Baker, David
    [J]. PROTEINS-STRUCTURE FUNCTION AND BIOINFORMATICS, 2011, 79 (03) : 830 - 838
  • [35] An orientation-dependent hydrogen bonding potential improves prediction of specificity and structure for proteins and protein-protein complexes
    Kortemme, T
    Morozov, AV
    Baker, D
    [J]. JOURNAL OF MOLECULAR BIOLOGY, 2003, 326 (04) : 1239 - 1259
  • [36] A simple physical model for binding energy hot spots in protein-protein complexes
    Kortemme, T
    Baker, D
    [J]. PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (22) : 14116 - 14121
  • [37] Enhancing Structure Prediction and Design of Soluble and Membrane Proteins with Explicit Solvent-Protein Interactions
    Lai, Jason K.
    Ambia, Joaquin
    Wang, Yumeng
    Barth, Patrick
    [J]. STRUCTURE, 2017, 25 (11) : 1758 - +
  • [38] Lazaridis T, 1999, PROTEINS, V35, P133, DOI 10.1002/(SICI)1097-0134(19990501)35:2<133::AID-PROT1>3.0.CO
  • [39] 2-N
  • [40] Leaver-Fay A., 2011, PLOS ONE, V6